Efektivitas Drainase Vertikal sebagai Mitigasi Likuefaksi dalam Ragam Potensi Percepatan Tanah Maksimum

Authors

  • Chariznantya Renatra Departemen Teknik Sipil Universitas Indonesia, Fakultas Teknik Universitas Indonesia
  • Widjojo Adi Prakoso Departemen Teknik Sipil Universitas Indonesia, Fakultas Teknik Universitas Indonesia

DOI:

https://doi.org/10.5614/jts.2025.32.3.1

Keywords:

Liquefaction, Midas GTS NX, Pore Pressure Ratio PPR, stone columns

Abstract

Abstract

Lolu Village, located in the Palu Koro fault groove and has a stratification of soil sediment that is layered with heterogeneous characters. Between the cohesive and granular soils, forming an overlapping layer. Lolu Village has its own challenges in dealing with the potential for earthquakes and liquefaction as a result. One of the liquefaction mitigations in SNI 8460:2017 is stone columns (SC) as a vertical drainage medium that functions to accelerate the rate of pore water dissipation. However, the condition of the layered soil interspersed with cohesive soil with low permeability, presents its own challenges in determining the depth of stone columns. It is necessary to review the extent of the effectiveness of SC against Peak Ground Accelerations (PGA) that have the potential to occur in Lolu Village. The stratification of the soil and stone columns will be modelled using the Midas GTS NX. Soil layers with liquefaction potential use the UBC Sand model and SC with the Mohr Coulomb model. When the stratification modeling of the soil was shaken by cyclic loads, it was found that only the upper granular layer was liquefaction. This identifies that the thin layer of cohesive soil between the layers of granular, has a role as a shield to resist the pore water pressure of the granular soil layer underneath. The study compared the initial soil conditions against two variations in the depth of SC. It was found that the depth of the SC was passed through the thin layer of cohesive soil between the granular layers, worsening the liquefaction condition of the upper layer.

Keywords : Liquefaction, Midas GTS NX, Pore Pressure Ratio PPR, stone columns

References

Badan Standardisasi Nasional. (2017). SNI - 8460 - 2017 Tata Persyaratan Perancangan Geoteknik. Jakarta: Badan Standardisasi Nasional.

Beauty, Michael H. & Byrne, Peter M. (2011). Documentation Report: UBCSAND Constituitive Model on Itasca UDM Web Site. Beaity Engineering LLC & University of British Columbia.

Cubrinovski, Misko., Rhodes, Aimee., Ntritsos, Nikolaos & Ballegooy, Sjoerd Van. (2019). System response of Liquefiable Deposits. Elsevier.

Idriss, I.M. and Boulanger, R.W. (2008) Soil Liquefaction during Earthquake. EERI Publication, Monograph MNO-12, Earthquake Engineering Research Institute, Oakland.

Kokusho, Takeji (2002). Mechanism for Postliquefaction Water Film Generation in Layered Sand. Journal of Geotechnical and Geoenviromental Engineering.

Prasojo, Danang & Hendriyawan (2018). Desain Stone Columns untuk Mitigasi Potensi Likuifaksi di kepulauan Tidore, Maluku Utara. Teknik Kelautan ITB.

Priebe, H. J. (1995). The Design of Vibro Replacement. Keller.

Hutabarat, Daniel. (2020). Estimating the Severity of Liquefaction Ejecta Using the Cone Penetration Test. ProQuest LLC.

Kenneth H. (2001). Liquefaction Resistance Of Soils: S Ummary Report From The 1996 Nceer And 1998 Nceer/Nsf Workshops On Evaluation Of Liquefaction R Esistance Of Soil.

Nurizkatilah. (2020). Analisis Potensi Likuefaksi di Desa Lolu Kota Palu Menggunakan Metode Standard Penetration Test dan Uji Laboratorium Gradasi Butiran pada Area dengan Pergerakan Lateral Besar. Universitas Indonesia.

Oktarina, Purbawati., Fikri, Faris & Istiarto. (2023). Correlation of excess pore water pressure ratio liquefaction phenomenin in Sibalaya ? Central Province. EDP Scuences.

Pestana, Juan M., Hunt, Cristopher E. & Goughnour, R. Robert. (1997). FEQDrain: A Finite Element Compiter Program for the Analysis of The Earthquake Generation and Dissipation of Pore Water Pressure In Lapised Sand Deposit With Vertical Drains. Earthquake Engineering Research Ceter. College of Engineering. University of California. Berkeley, California.

Prakoso, Widjojo A., Mazaya, Dheyaini & Kartika, Rummaisha A. (2022). Pore Pressure Responses of Liquefied Numerical Sand Columns. Journal of the Civil Engineering Forum.

Prasojo, Danang & Hendriyawan. (2018). Desain Stone Column untuk Mitigasi Potensi Likuifaksi Di Kepulauan Tidore, Maluku Utara. Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung.

Rayamajhi, Deepak., Ashford, Scott A., Boulanger, Ross W. & Elgamal, Ahmed. (2016). Dende Grabular Columns in Liquefiable Ground. I: Shear Reinforcement and Cyclic Stress Ratio Reduction. J. Geotech. Geoenviron.

Rayamajhi, Deepak., Nguyen, Thang V., Ashford, Scott A., Boulanger, Ross W., Lu, Jinchi Elgamal, Ahmed & Shao Lisheng. (2013). Numerical Study of Shear Stress for Discrete Columns in Liquefiable Soils. J. Geotech. Geoenviron.

Salem, Z. Ben., Frikha, W. & Bouassida M. (2015). Effect of Granular-Column Installation on Excess Pore Pressure Variation during Soil Liquefaction. International Journal of Geomechanics.

Sarimurat, Sacit., Isik, Nihat Sinan & Firat, Seyhan. (2022). Numerical Investigation of Stone Columns in Liquefable Soils. Saudi Society Geosciences.

Voyagaki, Elia., Kishida, Tadahiro., Aldulaimi, Rusul Falah & Mylonakis George. (2023). Integration and Calibration of UBCSAND model for drained monotomic and Cyclic Triaxil Compression of Aggeragates.

Youd, T.L., et al., 2001. Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER Workshops on Evaluation of Liquefaction Resistance of Soils, Journal of Geotechnical & Geoenvironmental Engineering, 127(10): 817?833 (DOI: 10.1061/(ASCE)1090 0241(2001)127:10(817).

Youd, T.L., Chair, Member, ASCE, Idriss., I.M., Co-Chair, fellow, ASCE, Andrus, Ronald. D, Arango, Ignacio., Castro, Gonzalo., Christian, Jihn T., Dobry, Richardo., Finn, W.D. Liam., Harder Jr, Leslie F., Hynes, Mary Ellem., Ishihara, Kenji.m Koester, Joseph P., Liiao, Sam S.C., Marcuson III, Wiliam F., Martin, Geoffrey R., Mitchell, James. K., Moriwaki, Yoshiharu., Power, Maurice S., Robertson, Peter K., Seed, Raymond B. & Stokoe II,

Youd, T.L., Hansen, Corbett M. & Bartlett, Steven F. (2001). Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement. Journal of Geotechnical and Geonviromental Engineer.

Published

2025-12-30

How to Cite

Renatra, C., & Adi Prakoso, W. (2025). Efektivitas Drainase Vertikal sebagai Mitigasi Likuefaksi dalam Ragam Potensi Percepatan Tanah Maksimum. Jurnal Teknik Sipil, 32(3), 299-314. https://doi.org/10.5614/jts.2025.32.3.1