Laboratory Performance of Asphalt Concrete containing Foamed Bitumen from extraction of Buton Natural Asphalt

Authors

  • Harmein Rahman Lecturer - Highway Engineering and Development Master Program, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung
  • Raihan Arditama Harnedi Highway Engineering and Development Master Program, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung https://orcid.org/0009-0009-4091-1654
  • Fanny Tri Novitasari Siregar Highway Engineering and Development Master Program, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung
  • Yongjoo Kim Korea Insitute of Civil Engineering and Building Technology https://orcid.org/0000-0002-1060-7194
  • Kanghun Lee Korea Insitute of Civil Engineering and Building Technology https://orcid.org/0000-0002-5639-7970
  • Ilhwan Kang Korea Insitute of Civil Engineering and Building Technology https://orcid.org/0000-0001-5142-1647

DOI:

https://doi.org/10.5614/jts.2024.31.3.2

Keywords:

Foamed Bitumen, Asbuton, Penetration Asphalt, Marshall Stability, Indirect Tensile Strength

Abstract

This study examines the performance of asphalt concrete mixtures using foamed bitumen derived from extracted Buton natural asphalt (Asbuton) in comparison to conventional penetration asphalt (Pen 60/70). The research focuses on evaluating key parameters such as aggregate properties, Marshall stability, indirect tensile strength, and other mix characteristics, benchmarked against Indonesian national standards. Asbuton, known for its high viscosity and resistance to extreme conditions, offers an alternative binder for sustainable road infrastructure development. The results demonstrate that foamed Asbuton significantly outperforms Pen 60/70 in critical metrics. Foamed Asbuton achieved higher stability (2440.8 kg) and a superior tensile strength ratio (92.78%), reflecting its robustness under heavy loads and resistance to moisture-induced damage. In contrast, Pen 60/70 exhibited reduced stability and rigidity when subjected to the foaming process. The enhanced performance of foamed Asbuton is attributed to its dense structure and the benefits of the foaming process, which improves aggregate coating and binder distribution at lower mixing temperatures. This study highlights the potential of foamed bitumen technology, particularly when paired with high-performance binders like Asbuton, to improve the durability and sustainability of road infrastructure. Foamed Asbuton emerges as a promising material for high-stress applications and extreme environmental conditions.

References

Andhika Putra, T., Subagio, B. S., & Hariyadi, E. S. (2021). Performance Analysis of Resilient Modulus and Fatigue Resistance of AC-BC Mixture with Full Extracted Asbuton and Reclaimed Asphalt Pavement (RAP). Jurnal Teknik Sipil, 28(3), 349?358. https://doi.org/10.5614/jts.2021.28.3.12

Ash, F., & Ash, B. (2023). The Durability of Asphalt Concrete Mix (AC-WC) Using Fly Ash from Coal Bottom Ash as Filler Substitution. NanoWorld Journal, 9, 144?148. https://doi.org/10.17756/nwj.2023-s2-026

Cheng, Z., Wang, R., Gao, X., Ren, J., & Song, Q. (2024). Expansion process of foamed bitumen considering surface energy. Road Materials and Pavement Design, 1?16. https://doi.org/10.1080/14680629.2024.2349026

Chomicz-Kowalska, A., Mruga?a, J., & Maciejewski, K. (2017). Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent. IOP Conference Series: Materials Science and Engineering, 245(3). https://doi.org/10.1088/1757-899X/245/3/032086

Hailesilassie, B. W., Hugener, M., & Partl, M. N. (2015). Influence of foaming water content on foam asphalt mixtures. Construction and Building Materials, 85, 65?77. https://doi.org/10.1016/j.conbuildmat.2015.03.071

Iman Adiwidodo, A., Rahman, H., & Zain, N. (2023). Analisis Kinerja Modulus Resilien dan Ketahanan Fatigue Campuran AC-WC dengan Asbuton Murni, BNA Blend, dan Aspal Pen 60/70. Jurnal Teknik Sipil, 30(3), 481?490. https://doi.org/10.5614/jts.2023.30.3.16

Lee, H. D., & Kim, Y. (2005). Validation of mix design procedure for Cold In-Place Recycling with foamed asphalt. 4th International Conference on Maintenance and Rehabilitation of Pavements and Technological Control, MAIREPAV 2005, November, 1000?1010. https://doi.org/10.1061/(asce)0899-1561(2007)19:11(1000)

Lee, H. J., Lee, J. H., & Park, H. M. (2007). Performance evaluation of high modulus asphalt mixtures for long life asphalt pavements. Construction and Building Materials, 21(5), 1079?1087. https://doi.org/10.1016/j.conbuildmat.2006.01.003

Li, H., Jiang, J., & Li, Q. (2023). Economic and environmental assessment of a green pavement recycling solution using foamed asphalt binder based on LCA and LCCA. Transportation Engineering, 13(June), 100185. https://doi.org/10.1016/j.treng.2023.100185

Li, Q., Song, S., Wang, J., Wang, N., & Zhang, S. (2024a). A review of the development of asphalt foaming technology. Journal of Road Engineering, 4(3), 334?347. https://doi.org/10.1016/j.jreng.2024.04.004

Li, Q., Song, S., Wang, J., Wang, N., & Zhang, S. (2024b). A review of the development of asphalt foaming technology. Journal of Road Engineering, 4(3), 334?347. https://doi.org/10.1016/j.jreng.2024.04.004

Lv, S., Fan, X., Yao, H., You, L., You, Z., & Fan, G. (2019). Analysis of performance and mechanism of Buton rock asphalt modified asphalt. Journal of Applied Polymer Science, 136(1), 1?8. https://doi.org/10.1002/app.46903

Meena, P., Ransinchung Rn, G. D., & Kumar, P. (2024). A comparative study on life cycle analysis of cold mix and foamed mix asphalt. IOP Conference Series: Earth and Environmental Science, 1326(1). https://doi.org/10.1088/1755-1315/1326/1/012093

Mondal, P. G., & Kuna, K. K. (2022). Mix design considerations for foamed bitumen stabilized materials: A review. Construction and Building Materials, 326(January), 126783. https://doi.org/10.1016/j.conbuildmat.2022.126783

Saleh, A., & Gp, L. (2021). Advantages and limitations of using foamed bitumen. Acta Technica Jaurinensis, 14(3), 300?314. https://doi.org/10.14513/actatechjaur.00587

Sentosa, L., Subagio, B. S., Rahman, H., & Yamin, R. A. (2018). Pengaruh Aspal Modifikasi Menggunakan Briket Asbuton Semi Ekstraksi Terhadap Reologi Aspal. Prosiding Forum Studi ?, November, 4?5. https://ojs.fstpt.info/index.php?journal=ProsFSTPT&page=article&op=view&path%5B%5D=350

Song, S., Li, Q., Wang, J., Shi, J., Wang, N., & Liu, T. (2024). Evaluation of foaming performance for polymer modified and virgin asphalt binders. Construction and Building Materials, 449(159), 138354. https://doi.org/10.1016/j.conbuildmat.2024.138354

Tasman, T., Setiadji, B. H., Situmorang, A., & Mudjono, D. (2023). Modulus Resilient Analysis of Flexible Pavement AC?WC and AC?BC Using Asphalt Modification PG.70 from Marshall Testing Results (M. A. A. Mohd Salleh, D. S. Che Halin, K. Abdul Razak, & M. I. I. Ramli, Eds.; pp. 709?718). Springer Nature Singapore.

Villegas, L., Mar, N., Idrogo, C., Suclupe, R., Lez, A., & Arriola, G. (2024). Use of Foamed Asphalt and Foamed Bitumen for Recycled Asphalt Mixtures: A Review. Civil Engineering and Architecture, 12(2), 1104?1123. https://doi.org/10.13189/cea.2024.120232

Widarsono, B., Sunarjanto, D., Susantoro, T. M., Suliantara, Setiawan, H. L., Wahyudi, P., Sugihardjo, Romli, M., & Dwiyanarti, D. (2023). Integrated Approach to Investigate the Potential of Asphalt/Tar Sand on Buton Island, Indonesia. Scientific Contributions Oil and Gas, 46(2), 65?85. https://doi.org/10.29017/SCOG.46.2.1583

Zhang, Y., Zhou, Y., Hu, X., Wan, J., Gan, W., Jing, Y., Liu, J., & Chen, Z. (2023). Research on Durability and Long-Term Moisture Stability Improvement of Asphalt Mixture Based on Buton Rock Asphalt. Sustainability (Switzerland), 15(17). https://doi.org/10.3390/su151712708

Downloads

Published

2024-12-30

How to Cite

Rahman, H., Harnedi, R. A., Siregar, F. T. N., Kim, Y., Lee, K., & Kang, I. (2024). Laboratory Performance of Asphalt Concrete containing Foamed Bitumen from extraction of Buton Natural Asphalt. Jurnal Teknik Sipil, 31(3), 249-254. https://doi.org/10.5614/jts.2024.31.3.2