Analisis Dinamika Atmosfer Saat Hujan Lebat di Wilayah Pontianak Menggunakan Model WRF-ARW (Studi Kasus 22-23 Desember 2022)
DOI:
https://doi.org/10.5614/jts.2025.32.2.3Keywords:
Heavy rain, cumulus parameterization scheme, WRF-ARWAbstract
Abstract
West Kalimantan has a tropical rainforest climate characterized by high rainfall intensity. On December 22?23, 2022, heavy rainfall occurred in Pontianak City with an intensity reaching 101.3 mm/day, resulting in flooding in the area. This study analyzes weather conditions and atmospheric stability during the event using the WRF-ARW model with FNL data as model input, along with GSMaP data and observations of air temperature and surface pressure for verification. Model accuracy was evaluated using dichotomous equations (Accuracy, FAR, POFD), correlation coefficient, and Mean Absolute Error (MAE). The verification results indicate that the GD scheme performed better than the KF Kessler and KF Lin schemes, with the GD scheme achieving an accuracy value of 0.74 and lower error. Analysis using the GD scheme suggests atmospheric conditions conducive to the formation of convective clouds that caused the heavy rainfall. These conditions were marked by an unstable atmosphere with a maximum temperature of 30C before the rain, low surface pressure, high wind speeds in the waters west of Pontianak City, humidity reaching 100%, and CAPE values indicating moderate instability (2000 J/kg).
Keywords: Heavy rain, cumulus parameterization scheme, WRF-ARW
References
Al Habib, A.H., and Firdiyanto, R.A., 2023, WRF-ARW Numerical Model Sensitivity Test on Simulation of Loud Rain in The South Kalimantan Area, Jurnal Fisika dan Aplikasinya, 19(3), 79-85.
Al Mughozali, S., Firdianto, P.U., and Irawan, A.M., 2017, Analisis Hujan Lebat dan Angin Kencang di Wilayah Banjarnegara Study Kasus Rabu 8 November 2017. Unnes Physics Journal, 6(1), 65-69.
Ardianto, R., 2017, Pemanfaatan Model WRF-ARW Untuk Analisis Fenomena Atmosfer Borneo Vortex (Studi Kasus Tanggal 28 Desember 2014), Positron, 7(1), p. 01.
Castorina, G., Caccamo, M.T., and Magaz S., 2019, Study of convective motions and analysis of the impact of physical parametrization on the WRF-ARW forecast model. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 97(S2), 19.
Diniyati, E., Pratama, R.R., Muzaki, N.H., Mulya, A., And Syofyan, D.Q., 2020, Kajian Convective Available Potential Energy (Cape) Saat Kejadian Hujan Sangat Lebat (Studi Kasus: Banjir Jakarta, 22-23 Februari 2020), Jurnal Material dan Energi Indonesia, 10(337), pp. 10?19.
Emmanouil, G., Vlachogiannis, D., and Sfetsos, A., 2021, Exploring the ability of the WRF-ARW atmospheric model to simulate different meteorological conditions in Greece. Atmospheric Research, 247, 105226.
Huda, A.D., and Mulya, A., 2022, Pemanfaatan Metode RGB (Red Green Blue) pada Citra Satelit Himawari-8 dalam Klasifikasi Awan pada Kejadian Hujan Lebat Daerah Sidoarjo 3 Februari 2021. Jurnal Teknik SILITEK, 1(02), 73-79.
Kim, M., Im, J., Park, H., Park, S., Lee, M.I., and Ahn, M.H., 2017, Detection of tropical overshooting cloud tops using Himawari-8 imagery. Remote sensing, 9(7), 685.
Kirshbaum, D.J., Adler, B., Kalthoff, N., Barthlott, C., and Serafin, S., 2018, Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere, 9(3), 80.
Moya-varez, A.S., Gvez, J., Holgu, A., Estevan, R., Kumar, S., Villalobos, E., and Silva, Y., 2018, Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru. Atmosphere, 9(9), 362.
Prasetyo, S., and Zakir, A., 2020, Tinjauan Meteorologis Pada Fenomena Hujan Lebat Penyebab Banjir (Studi Kasus: Cilacap, 16-17 November 2020 Dan Kendal, 19 November 2020). Jurnal Material dan Energi Indonesia, 10(01), 37-48.
Purnama, D.R., Hakiki, M., Fitria, N.I., Putri, A.P.S., Pramuwardani, I., and Rifani, A., 2023, On the Development of the Impact-Based Forecast Model in Indonesia. In International Conference on Radioscience, Equatorial Atmospheric Science and Environment (pp. 259-271). Singapore: Springer Nature Singapore.
Putra, R.M. and Rifani, A., 2016, Analisis Hujan Ekstrem Menggunakan Model WRF-ARW, Prosiding Seminar Nasional Fisika Dan Pendidikan Fisika, pp. 105?114.
Ridwan, R. and Kudsy, M., 2011, Parameterisasi Model Cuaca Wrf-Arw Untuk Mendukung Kegiatan Teknologi Modifikasi Cuaca (Tmc) Di Sumatera, Sulawesi, Dan Jawa, Jurnal Sains & Teknologi Modifikasi Cuaca, 12(1), p.1.
Rumahorbo, I., Hidayat, U., Prasetyo, S., and Mulya, A., 2020, Analisis Kondisi Atmosfer Pada Kejadian Hujan Lebat Penyebab Banjir Deli Serdang (Studi Kasus: 18 Juni 2020), Prosiding Seminar Nasional Kahuripan I Tahun 2020, pp. 144?148.
Saragih, I.J.A., Kristianto, A., Silitonga, A.K., and Paski, J.A.I., 2017, Kajian Dinamika Atmosfer saat Kejadian Hujan Lebat di Wilayah Pesisir Timur Sumatera Utara Menggunakan Model WRF-ARW dan Citra Satelit Himawari-8. Unnes Physics Journal, 6(1), 25-30.
Schumacher, R.S., and Rasmussen, K.L., 2020, The formation, character and changing nature of mesoscale convective systems. Nature Reviews Earth & Environment, 1(6), 300-314.
Simbolon, C.D.L., Ruhiat, Y. and Saefullah, A., 2022, Analisis Arah dan Kecepatan Angin Terhadap Sebaran Curah Hujan Di Wilayah Kabupaten Tangerang, Jurnal Teori dan Aplikasi Fisika, 10(01), pp. 113?114.
Wisnawa, G.G., Utami, A.D., Prayudhi, S.A., and Sari, F.P., 2019, Pemanfaatan Model WRF-ARW untuk Simulasi Hujan Sangat Lebat di Bandara I Gusti Ngurah Rai Bali (Studi Kasus Tanggal 12 Januari 2019). Prosiding Seminar Nasional Fisika dan Pendidikan Fisika 2019. pp. 56-63.