Numerical Analisis Numerik Pengaruh Diameter dan Kedalaman Cavity Tunggal Bentuk Lingkaran Dalam Lapisan Batu Kapur (Limestone) Terhadap Daya Dukung Fondasi Dangkal Di Atasnya

Authors

  • Johannes Andigan Sinaga Program Studi Magister Teknik Sipil, Fakulas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung
  • Adhikrita Arif Permana Program Studi Magister Teknik Sipil, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung

DOI:

https://doi.org/10.5614/jts.2025.32.1.7

Keywords:

Cavity, limestone, shallow foundation bearing capacity, finite element method, Hoek-Brown

Abstract

Abstrak

Penelitian ini menganalisis pengaruh diameter dan kedalaman cavity tunggal berbentuk lingkaran terhadap daya dukung fondasi dangkal pada lapisan batuan kapur (limestone) menggunakan metode elemen hingga (Finite Element Method). Parameter utama yang dievaluasi adalah daya dukung relatif (R) berdasarkan variasi diameter cavity (D) dan kedalaman cavity (H) yang relatif terhadap lebar fondasi (B). Karakteristik massa batuan dimodelkan menggunakan kriteria keruntuhan Hoek-Brown. Hasil analisis menunjukkan bahwa dalam kondisi batuan lemah, mekanisme keruntuhan utama adalah punching failure, di mana fondasi menembus lapisan atas batuan yang tidak mampu menahan beban. Cavity dengan diameter besar (D>B) pada kedalaman dangkal (H<B) diidentifikasi sebagai kondisi risiko tinggi, dengan pengurangan daya dukung 70-90% dibandingkan kondisi tanpa cavity. Kondisi ini membutuhkan prioritas penanganan pertama. Penelitian ini juga mengidentifikasi hubungan eksponensial yang mempermudah interpretasi data tanpa melibatkan variabel lebar fondasi (B), sehingga lebih praktis untuk aplikasi teknis. Dalam studi kasus, tiga kriteria desain diajukan: menghindari cavity risiko tinggi, memperkuat cavity, dan menggunakan desain fondasi adaptif. Temuan ini memberikan kontribusi penting dalam memahami pengaruh cavity pada fondasi dangkal di kawasan karst dan menyediakan panduan teknis yang praktis.

Kata Kunci: Cavity, batuan kapur, daya dukung fondasi dangkal, finite element method, Hoek-Brown.

Abstract

This study analyzes the effects of circular single cavity diameter and depth on the bearing capacity of shallow foundations in limestone layers using the Finite Element Method. Key parameters include relative bearing capacity (R) based on cavity diameter (D) and depth (H) relative to foundation width (B). The rock mass was modeled using the Hoek-Brown failure criterion. The results show that in weak rock conditions, the dominant failure mechanism is punching failure, where the foundation penetrates the weak upper rock layer. Cavities with large diameters (D>B) at shallow depths (H<B) are identified as high-risk conditions, reducing bearing capacity by 70-90% compared to conditions without cavities. These conditions require priority handling. The study identifies an exponential relationship simplifying data interpretation without involving foundation width (B), making it more practical for technical applications. In the case study, three design criteria are proposed: avoiding high-risk cavities, reinforcing cavities, and adopting adaptive foundation designs. These findings contribute significantly to understanding cavity effects on shallow foundations and provide practical guidelines for karst region structures.

Keywords: Cavity, limestone, shallow foundation bearing capacity, finite element method, Hoek-Brown.

References

Bieniawski, Z. T. (1989). Engineering Rock Mass Classifications. Canada: John Wiley & Sons.

Bieniawski, Z., & Bernede, M. (1979). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 138-140.

D. U. Deere, D. W. (1988). The Rock Quality Designation (RQD) Index in Practice. Philadelphia: American Society for Testing and Materials.

Deere, D. U., & Deere, D. W. (1963). Technical Description of Rock Cores for Engineering Purpose. Rock Mechanics and Engineering Geology, 16-22.

Doruk, P. (1991). Analysis of the laboratory strength data using the original and modified Hoek-Brown failure criteria. Toronto: MASc thesis, Dept. Civil Engineering, University of Toronto.

Evert Hoek, C. C.-T. (2002). Hoek-Brown Failure Criterion - 2002 Edition. Toronto: Proc. NARMS-TAC Conference.

Evert Hoek, P. K. (1995). Rock Mass Rating. In Support of Underground Excavations in Hard Rock (pp. 34-37). Rotterdam: A. A. Balkema Publishers.

Evert Hoek, P. M. (1998). Applicability of The Geological Strength Index (GSI) Classification for Very Weak and Sheared Rock Masses. The Case of The Athens Schist Formation. Bulletin of Engineering Geology and the Environment, 151-160.

Goodman, R. E. (1989). Introduction to Rock Mechanics. Canada: John Wiley & Sons.

Hoek, E. (1983). Strength of Jointed Rock Masses. Rankine Lecture. Geotehcnique 33(3), 187-223.

Hoek, E. (2006). Practical Rock Engineering. Canada: Evert Hoek Consulting Engineer Inc.

Hoek, E., Brown, E. T., & ASCE, M. (1980). Empirical Strength Criterion for Rock Masses. Journal of The Geotechnical Engineering Division, 1013-1035.

Hoek., E., Wood, D., Shah, S., & Hudson, J. A. (1992). A Modified Hoek?Brown Failure Criterion for Jointed Rock Masses. Rock Characterization: ISRM Symposium, Eurock '92. Chester, UK: Department of Civil Engineering, University of Toronto, Canada.

ISRM. (1978). Commission on standardization of laboratory and field tests: suggested methods for the quantitative description of discontinuities in rock masses. Int J RockMech Min Sci Geomech, 319-368.

ISRM. (1981). Rock Characterization, Testing, and Monitoring. In: Brown ET (ed) ISRM Suggested Method. Oxford: Pergamon Press.

Perkasa, P. P. (2023). Fakfak ERT Daily Progress. Papua: PT. Portal Engineering Perkasa.

Piyush Kumar, V. B. (2022). Ultimate Bearing Capacity of A Foundation on The Rock Media due to the Presence of A Circular Void; Design Tables, Failure Mechanism, and Recommendations. Arabian Journal of Geosciences, 1-22.

Sowers, G. F. (1979). Introductory Soil Mechanics and Foundations: Geotechnical Engineering 4th Edition. New York: Macmillan Publishing.

Vhelyi, B. (2013). A Possible Method for Estimating The Poisson's Rate Values of The Rock Masses. Acta Geodaetica et Geophysica Hungarica, 313-322.

Yao Xiao, M. Z. (2018). Finite Element Limit Analysis of the Bearing Capacity of Strip Footing on a Rock Mass with Voids. International Journal of Geomechanics, 1-15.

Yao Xiao, M. Z. (2023). Ultimate Bearing Capacity of Strip Footings Above Rectangular Voids in Hoek-Brown Rock Masses. Computers and Geotechnics, 1-22.

Published

2025-07-21

How to Cite

Sinaga, J. A., & Permana, A. A. . (2025). Numerical Analisis Numerik Pengaruh Diameter dan Kedalaman Cavity Tunggal Bentuk Lingkaran Dalam Lapisan Batu Kapur (Limestone) Terhadap Daya Dukung Fondasi Dangkal Di Atasnya. Jurnal Teknik Sipil, 32(1), 55-66. https://doi.org/10.5614/jts.2025.32.1.7