Analisis Desain Pekerjaan Peninggian Jalan pada Lokasi Banjir (Studi Kasus: Ruas Bts. Kab. Serang ? Bts. Kota Pandeglang)
DOI:
https://doi.org/10.5614/jts.2025.32.1.6Keywords:
Peninggian jalan, sistem perkerasan, MDP 2024, kenpaveAbstract
Abstrak
Ruas Jalan Bts. Kab. Serang ? Bts. Kota Pandeglang STA. 1+100 merupakan ruas jalan yang rawan banjir di Provinsi Banten. Alternatif penanganan ruas jalan yaitu berupa peninggian jalan. Penelitian dilakukan dengan perhitungan menggunakan Pedoman Desain Drainase Jalan Nomor: 23/SE/Db/2021 terkait tinggi luapan air banjir sebagai dasar penentuan tinggi minimum peninggian. Analisis desain sistem perkerasan metode empiris menggunakan Manual Desain Perkerasan Jalan Tahun 2024 No. 03/M/BM/2024, lalu dimodelkan untuk dianalisis dengan metode mekanistik-empiris program kenpave dan dilakukan perbandingan dalam aspek biaya dari setiap sistem perkerasan. Hasil analisis kebutuhan peninggian jalan yaitu minimum sebesar 23 cm. Analisis metode empiris didapatkan tebal beton pada rigid pavement yaitu 315 mm dipilih Tipe 1R dan 2R, tebal aspal pada flexible pavement yaitu 285 mm. Ditentukan 2 tipe rigid pavement dan 4 tipe flexible pavement dianalisis dengan program Kenpave. Analisis metode mekanistik-empiris rigid pavement memilih Tipe 2R dengan index cracking dan max stress terkecil, untuk flexible pavement dipilih Tipe 4F dengan jumlah repetisi beban pada fatigue cracking dan permanent deformation yang paling besar. Analisis biaya untuk umur rencana 40 tahun rigid pavement Tipe 2R senilai Rp. 10.615.725,00/m? dan flexible pavement Tipe 4F senilai Rp. 12.437.698,00/m?. Dipilih Tipe 2R dengan biaya lebih kecil dari Tipe 4F.
Kata kunci : Peninggian jalan, sistem perkerasan, MDP 2024, kenpave.
Abstract
The road section Bts. Kab. Serang ? Bts. Kota Pandeglang STA. 1+100 is a flood-prone road in Banten Province. An alternative solution for the road section is to raise the road. The research was conducted with calculations using the Road Drainage Design Guidelines Number: 23/SE/Db/2021 related to the flood overflow height, which serves as the basis for determining the minimum elevation height. The analysis of the pavement design system using the empirical method follows the Road Pavement Design Manual 2024 No. 03/M/BM/2024, which is then modeled for analysis using the mechanistic-empirical method with the Kenpave program, and a cost comparison is conducted for each pavement system. The analysis results for the road elevation requirement indicate a minimum of 23 cm. The empirical method analysis obtained a concrete thickness of 315 mm for rigid pavement, selecting Type 1R and 2R, and an asphalt thickness of 285 mm for flexible pavement. Two types of rigid pavement and four types of flexible pavement were analyzed using the Kenpave program. The analysis of the mechanistic-empirical method for rigid pavement selects Type 2R with the smallest cracking index and max stress, while for flexible pavement, Type 4F is chosen with the highest number of load repetitions in fatigue cracking and permanent deformation. Cost analysis for a 40-year design life of rigid pavement Type 2R is Rp. 10,615,725.00/m? and flexible pavement Type 4F is Rp. 12,437,698.00/m?. Type 2R was chosen because its cost is lower than Type 4F.
Keywords : Raising road, pavement systems, MDP 2024, kenpave.
References
Using Gumbel?s Distribution Method: A Case Study of Lower Mahi Basin, India. Journal of Water Resources and Ocean Science. Vol. 6, No. 4, 2017, pp. 51-54. doi: 10.11648/j.wros.20170604.11.
Damayanti, M., Sutrisno, M., Karnisah, I. (2020). The Road Drainage Planning for Flood Control in Dr. Djunjunan Road, Pasteur-Bandung.
Direktorat Jenderal Bina Marga. (2021). Pedoman Desain Drainase Jalan No. 15/P/BM/2021. Jakarta, Indonesia: Kementerian Pekerjaan Umum dan Perumahan Rakyat.
Direktorat Jenderal Bina Marga. (2024). Manual Desain Perkerasan Jalan No. 03/M/BM/2024. Jakarta, Indonesia: Kementerian Pekerjaan Umum dan Perumahan Rakyat.
ERES Division. (2000). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures (Appendix Dd-1:Resilient Modulus As Function Of Soil Moisture-Summary Of Predictive Models). West University Avenue Champaign, NCHRP. Illinois.
Federal Highway Administration. (1998). Life Cycle Cost Analysis in Pavement Desain (In Search of Better Investment Decisions). Federal Highway Administration: Pavement Division Interim Technical Bulletin, Publication No. FHWA-SA-98-079
Gaume, E., Livet, M., Desbordes, M., & Villeneuve, J., P. (2003). Hydrological Analysis Of The River Aude, France, ?ash ?ood On 12 And 13 November 1999.
Herison, A., Romdania, Y., Purwadi, O. K., & Effendi, R. (2018). Kajian Penggunaan Metode Empiris dalam Menentukan Debit Banjir Rancangan pada Perencanaan Drainase (Review).
Huang, Y. H. (2004). Pavement Analysis and Design (Second Edition). Lexington: University of Kentucky.
Hu, A., Bai, Q., Chen, L., Meng, S., Li, Q., & Xu, Z., (2022). A Review on Empirical Methods of Pavement Performance Modeling. Construction and Building Materials 342, 127968. https://doi.org/10.1016/j.conbuildmat.2022.127968
Kalore, S. A., Babu, G. L. S. & Mallick, R. B. (2019). Design Approach for Drainage Layer in Pavement Subsurface Drainage System Considering Unsaturated Characteristics. Department of Civil Engineering, Indian Institute of Science. Transportation Geotechnics 18 (2019) 57?71.
Kementerian Pekerjaan Umum dan Perumahan Rakyat. (2015). Pedoman Bahan Konstruksi Bangunan dan Rekayasa Sipil, Perencanaan Teknis Drainase Bawah Permukaan dengan Menggunakan Filter Geotekstil. Surat Edaran Menteri Pekerjaan Umum dan Perumahan Rakyat No. 34/SE/M/2015. Jakarta.
Kichad, J. S., Vishwakarma, R. J., & Magade, S. B. (2023). Comparison Of Stresses in Jointed Plain Concrete Pavement without Shoulder. Materials Today: Proceedings 77 (2023) 764?772
Lagmay, A. M., Mendoza, J., Cipriano, F., Delmendo, P. A., Lacsamana, M. N., Moises, M. A., Pellejera III, N., Punay, K. N., Sabio, G., Santos, L., Serrano, J., Taniza, H. J. & Tingin, N. E. (2017). Street Floods in Metro Manila and Possible Solutions, Journal of Environmental Sciences.
Moges, S. A., & Taye, M. T. (2019). Regional flood frequency curves for remote rural areas of the Nile River Basin: The case of Baro-Akobo drainage basin, Ethiopia.
Rojas, N. A., Suarez, F., Chamorro, A., & Gonzalez, A. (2023). Flood Impact On Structural Response Of Asphalt Pavement: A Finite Element Modeling Approach.
Tisnavianti, R. (2022): Analisis Pengaruh Lapis Drainase terhadap Kinerja Struktur Perkerasan Kaku, Tesis Program Magister, Institut Teknologi Bandung.
Viarsami, V V. (2022): Pengaruh Efektivitas Lapis Drainase Terhadap Kinerja Struktural Sistem Perkerasan Lentur, Tesis Program Magister, Institut Teknologi Bandung.
Wardhana, A. S., (2023): Analisis Sistem Perkerasan Kaku dengan Variasi Lapis Pondasi Bawah untuk Pekerjaan Raising pada Lokasi Banjir, Tesis Program Magister, Institut Teknologi Bandung.
Xiao, D. X. & Wu, Z. (2018). Longitudinal Cracking Of Jointed Plain Concrete Pavements In



