Penerapan Teknologi Self-healing pada Beton Ringan: Tinjauan Literatur
DOI:
https://doi.org/10.5614/jts.2025.32.2.14Keywords:
Lightweight aggregate, concrete, healing agent, crack, self-healingAbstract
Abstrak
Konstruksi bangunan di era modern menuntut material yang berkualitas tinggi dan berkelanjutan. Salah satu permasalahan yang telah lama ada pada struktur beton bertulang adalah munculnya retak akibat beban berulang, yang tidak hanya menurunkan kekuatan struktural, tetapi juga mempercepat proses degradasi melalui infiltrasi zat-zat agresif dari lingkungan eksternal. Salah satu upaya yang sedang dikembangkan dalam mengatasi masalah retak pada beton adalah penggunaan self-healing concrete. Perbaikan retak mikro pada beton self-healing bisa terjadi melalui aktivasi agen penyembuh (healing agent) yang dibawa ke dalam beton melalui carrier bakteri. Tinjauan literatur ini membahas penggunaan mikroorganisme (bakteri) sebagai agen penyembuh dengan agregat ringan sebagai carrier bakteri dalam beton self-healing. Penelitian terkini menunjukkan bahwa kelangsungan hidup bakteri sebagai healing agent adalah hal yang sangat vital dalam menentukan efektivitas beton self-healing. Pelapisan carrier bakteri menggunakan zat pelapis seperti silika gel dan sodium silikat terbukti bisa menjaga bakteri dan nutrisi tetap dalam kondisi dorman hingga terjadi retak dan teraktivasi. Namun, meskipun penerapan beton self-healing di beberapa proyek telah menunjukkan peningkatan durabilitas beton, kapasitas penyembuhannya masih terbatas pada retak-retak mikro. Oleh karena itu, pengembangan lanjutan diperlukan, terutama dalam memperluas kemampuan penyembuhan retakan yang lebih besar, menurunkan biaya produksi, serta mengoptimalkan penerapan teknologi ini dalam praktik konstruksi secara luas.
Kata-kata Kunci: Agregat ringan, beton, healing agent, retak, self-healing
Abstract
Modern construction demands high-quality and sustainable materials. One of the longstanding issues in reinforced concrete structures is the formation of cracks due to repeated loading, which not only compromises structural integrity but also accelerates degradation by allowing the infiltration of aggressive external substances. In response, researchers are developing self-healing concrete to address this issue. The repair of microcracks in self-healing concrete can occur through the activation of healing agents delivered into the concrete via bacterial carriers. This paper discusses the use of microorganisms (bacteria) as healing agents with lightweight aggregates as carriers for the bacteria in self-healing concrete. Recent studies indicate that the viability of bacteria as healing agents is crucial to the effectiveness of self-healing concrete. The encapsulation of bacterial carriers using coating materials such as silica gel and sodium silicate has proven effective in preserving bacterial cells and nutrients in a dormant state until crack formation triggers their activation. Despite successful field applications demonstrating improved concrete durability, the healing capacity remains largely limited to microcracks. Thus, further advancements are necessary to enhance the healing range, reduce production costs, and optimize the integration of self-healing concrete technology into broader construction practices.
Keywords: Lightweight aggregate, concrete, healing agent, crack, self-healing.
References
Alghamri, R., Kanellopoulos, A., & Al-Tabbaa, A. (2016). Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Construction and Building Materials, 124, 910?921. https://doi.org/10.1016/j.conbuildmat.2016.07.143
Al-Tabbaa, A., Litina, C., Giannaros, P., Kanellopoulos, A., & Souza, L. (2019). First UK field application and performance of microcapsule-based self-healing concrete. Construction and Building Materials, 208, 669?685. https://doi.org/10.1016/j.conbuildmat.2019.02.178
Basit Ehsan Khan, M., Dias-da-Costa, D., & Shen, L. (2023). Factors affecting the self-healing performance of bacteria-based cementitious composites: A review. Construction and Building Materials, 384, 131271. https://doi.org/10.1016/j.conbuildmat.2023.131271
Chen, H., Qian, C., & Huang, H. (2016). Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Construction and Building Materials, 126, 297?303. https://doi.org/10.1016/j.conbuildmat.2016.09.023
Chen, H.-J., Peng, C.-F., Tang, C.-W., & Chen, Y.-T. (2019a). Self-Healing Concrete by Biological Substrate. Materials, 12(24), 4099. https://doi.org/10.3390/ma12244099
Chen, H.-J., Peng, C.-F., Tang, C.-W., & Chen, Y.-T. (2019b). Self-Healing Concrete by Biological Substrate. Materials, 12(24), 4099. https://doi.org/10.3390/ma12244099
De Belie, N., Gruyaert, E., Al?Tabbaa, A., Antonaci, P., Baera, C., Bajare, D., Darquennes, A., Davies, R., Ferrara, L., Jefferson, T., Litina, C., Miljevic, B., Otlewska, A., Ranogajec, J., Roig?Flores, M., Paine, K., Lukowski, P., Serna, P., Tulliani, J., ? Jonkers, H. M. (2018). A Review of Self?Healing Concrete for Damage Management of Structures. Advanced Materials Interfaces, 5(17). https://doi.org/10.1002/admi.201800074
Dembovska, L., Bajare, D., Korjakins, A., Toma, D., & Jakubovica, E. (2019). Preliminary research for long lasting self-healing effect of bacteria-based concrete with lightweight aggregates. IOP Conference Series: Materials Science and Engineering, 660(1), 012034. https://doi.org/10.1088/1757-899X/660/1/012034
Du, W., Yu, J., Gu, S., Wang, R., Li, J., Han, X., & Liu, Q. (2020). Effect of temperatures on self-healing capabilities of concrete with different shell composition microcapsules containing toluene-di-isocyanate. Construction and Building Materials, 247, 118575. https://doi.org/10.1016/j.conbuildmat.2020.118575
Ehsan Khan, M. B., Shen, L., & Dias-da-Costa, D. (2021). Crack healing performance of bacteria-based mortar under sustained tensile loading in marine environment. Cement and Concrete Composites, 120, 104055. https://doi.org/10.1016/j.cemconcomp.2021.104055
Er?an, Y. , Da Silva, F. B., Boon, N., Verstraete, W., & De Belie, N. (2015). Screening of bacteria and concrete compatible protection materials. Construction and Building Materials, 88, 196?203. https://doi.org/10.1016/j.conbuildmat.2015.04.027
Fu, Q., Wu, Y., Liu, S., Lu, L., & Wang, J. (2022). The adaptability of Sporosarcina pasteurii in marine environments and the feasibility of its application in mortar crack repair. Construction and Building Materials, 332, 127371. https://doi.org/10.1016/j.conbuildmat.2022.127371
Gardner, D., Lark, R., Jefferson, T., & Davies, R. (2018). A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case Studies in Construction Materials, 8, 238?247. https://doi.org/10.1016/j.cscm.2018.02.002
Gilford, J., Hassan, M. M., Rupnow, T., Barbato, M., Okeil, A., & Asadi, S. (2014). Dicyclopentadiene and Sodium Silicate Microencapsulation for Self-Healing of Concrete. Journal of Materials in Civil Engineering, 26(5), 886?896. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000892
Han, S., Choi, E. K., Park, W., Yi, C., & Chung, N. (2019). Effectiveness of expanded clay as a bacteria carrier for self-healing concrete. Applied Biological Chemistry, 62(1), 19. https://doi.org/10.1186/s13765-019-0426-4
Han, S., Jang, I., Choi, E. K., Park, W., Yi, C., & Chung, N. (2020). Bacterial Self-Healing Performance of Coated Expanded Clay in Concrete. Journal of Environmental Engineering, 146(7). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001713
Hermawan, H., Minne, P., Serna, P., & Gruyaert, E. (2021). Understanding the impacts of healing agents on the properties of fresh and hardened self-healing concrete: A review. In Processes (Vol. 9, Issue 12). MDPI. https://doi.org/10.3390/pr9122206
Hosseini Balam, N., Mostofinejad, D., & Eftekhar, M. (2017). Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials, 145, 107?116. https://doi.org/10.1016/j.conbuildmat.2017.04.003
Huang, F., & Zhou, S. (2022). A Review of Lightweight Self-Healing Concrete. In Materials (Vol. 15, Issue 21). MDPI. https://doi.org/10.3390/ma15217572
Huang, H., Ye, G., & Damidot, D. (2013). Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste. Cement and Concrete Research, 52, 71?81. https://doi.org/10.1016/j.cemconres.2013.05.003
Huynh, N. N. T., Imamoto, K., & Kiyohara, C. (2019). A Study on Biomineralization using <i>Bacillus Subtilis</i> Natto for Repeatability of Self-Healing Concrete and Strength Improvement. Journal of Advanced Concrete Technology, 17(12), 700?714. https://doi.org/10.3151/jact.17.700
Huynh, N. N. T., Phuong, N. M., Toan, N. P. A., & Son, N. K. (2017). Bacillus Subtilis HU58 Immobilized in Micropores of Diatomite for Using in Self-healing Concrete. Procedia Engineering, 171, 598?605. https://doi.org/10.1016/j.proeng.2017.01.385
Javeed, Y., Goh, Y., Mo, K. H., Yap, S. P., & Leo, B. F. (2024). Microbial self-healing in concrete: A comprehensive exploration of bacterial viability, implementation techniques, and mechanical properties. Journal of Materials Research and Technology, 29, 2376?2395. https://doi.org/10.1016/j.jmrt.2024.01.261
Jiang, S., Lin, Z., Tang, C., & Hao, W. (2021). Preparation and Mechanical Properties of Microcapsule-Based Self-Healing Cementitious
Cementitious Composites. Materials, 14(17), 4866. https://doi.org/10.3390/ma14174866
Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), 230?235. https://doi.org/10.1016/j.ecoleng.2008.12.036
Kanellopoulos, A., Qureshi, T. S., & Al-Tabbaa, A. (2015). Glass encapsulated minerals for self-healing in cement based composites. Construction and Building Materials, 98, 780?791. https://doi.org/10.1016/j.conbuildmat.2015.08.127
Meng, H., Lu, X., Hussain, S., Shaheen, A., & Liu, G. (2021). Self-Healing Behaviors of Core?Shell-Structured Microcapsules Cement-Based Materials Immobilized with Microbes by Expanded Perlite. Journal of Nanoelectronics and Optoelectronics, 16(11), 1828?1833. https://doi.org/10.1166/jno.2021.3130
Nodehi, M., Ozbakkaloglu, T., & Gholampour, A. (2022). A systematic review of bacteria-based self-healing concrete: Biomineralization, mechanical, and durability properties. In Journal of Building Engineering (Vol. 49). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2022.104038
Panza Uguzzoni, A. M., Fregonara, E., Ferrando, D. G., Anglani, G., Antonaci, P., & Tulliani, J. M. (2023). Concrete Self-Healing for Sustainable Buildings: A Focus on the Economic Evaluation from a Life-Cycle Perspective. Sustainability (Switzerland), 15(18). https://doi.org/10.3390/su151813637