Analisis Pengaruh Rendaman Hingga Lapis Pondasi Bawah Terhadap Kinerja Struktur Perkerasan Lentur Dengan Finite Element Method
DOI:
https://doi.org/10.5614/jts.2025.32.2.12Keywords:
Degree of saturation, finite element, pavement performance, sensitivity analysis, submersion elevationAbstract
Abstrak
Eksistensi air dalam bentuk rendaman pada struktur perkerasan diketahui memiliki dampak yang buruk. Pemahaman yang tepat dalam menilai seberapa besar dampak yang dihasilkan, akan sangat membantu dalam melakukan evaluasi kinerja struktur perkerasan. Penelitian ini menggunakan metode yang memungkinkan untuk menganalisis pengaruh variasi tinggi muka air terhadap performa konstruksi perkerasan. Simulasi dilakukan dengan menaikkan elevasi muka air secara bertahap dari kedalaman 10 meter di bawah subgrade hingga ke subbase. Soil Water Characteristic Curve (SWCC) dimanfaatkan dalam hal ini untuk menentukan gradasi derajat kejenuhan pada subgrade dan subbase yang terjadi akibat adanya rendaman pada elevasi tertentu, yang juga mempengaruhi nilai modulus resiliennya. Metode analisis dengan 3D finite element digunakan dalam memperoleh visualisasi dan nilai regangan kritis ketika kondisi tidak jenuh hingga sepenuhnya jenuh, untuk kemudian dinyatakan sebagai nilai kinerja berdasarkan Manual Desain Perkerasan Jalan 2024 (MDP 2024). Hasil penelitian mengungkapkan bahwa kinerja struktur perkerasan lentur, terutama kinerja deformasi permanen, dinilai sangat sensitif terhadap perubahan tinggi muka air rendaman. Temuan menarik lainnya adalah identifikasi elevasi muka air dimana pengaruh yang diberikan terhadap perubahan kinerja tidak lagi signifikan, yaitu pada elevasi lebih besar dari 60 cm di bawah subgrade, yang bersesuaian dengan syarat jagaan muka air yang direkomendasikan oleh MDP 2024.
Kata- kata kunci: Analisis sensitivitas, derajat kejenuhan, elevasi rendaman, finite element, kinerja perkerasan
Abstract
The presence of water in the form of submersion within pavement is known to have detrimental effects. A proper understanding of assessing the extent of these impacts is crucial for evaluating pavement performance. This study employs a method to analyze the influence of varying water table elevations on pavement performance. Simulations were conducted by incrementally raising the water table from a depth of 10 meters below the subgrade up to the subbase. The Soil Water Characteristic Curve was utilized to determine the saturation degree gradation in the subgrade and subbase due to submersion at specific elevations, which also affects their resilient modulus values. A 3D finite element analysis method was used to obtain visualizations and critical strain values under unsaturated to fully saturated conditions, which were then assessed as performance indicators based on Indonesia: 2024 Road Pavement Design Manual (MDP 2024). The results reveal that permanent deformation performance is highly sensitive to changes in submersion water table elevation. Another significant finding is the identification of the water table elevation which the impact on performance change becomes negligible?specifically, at elevations greater than 60 cm below the subgrade, which aligns with the recommended water table control requirement in MDP 2024.
Keywords: Degree of saturation, finite element, pavement performance, sensitivity analysis, submersion elevation
References
Avil-Rojas, N., Suez, F., Chamorro, A., & Gonzez, A. (2023). Flood Impact on Structural Response of Asphalt Pavement: A Finite Element Modeling Approach. Structures, 57.
Bai, T., Cheng, Z., Hu, X., Fuentes, L., & Walubita, L. F. (2021). Viscoelastic modelling of an asphalt pavement based on actual tire-pavement contact pressure. Road Materials and Pavement Design, 22(11), 2458?2477.
Ceratti, A., Gehling, W., and Nunez, W.P., 2004. Seasonal variations of a subgrade soil resilient modulus in Southern Brazil. In: Transportation Research Record 1874. Washington, DC: Transportation Research Board, 165?173.
Chen, X., & Wang, H. (2023). Impact of sea level rise on asphalt pavement responses considering seasonal groundwater and moisture gradient in subgrade. Transportation Geotechnics, 40. https://doi.org/10.1016/j.trgeo.2023.100992
Drumm, E. C., Boateng-Poku, Y., and Johnson Pierce, T. (1990). ?Estimation of subgrade resilient modulus from standard tests. Journal of Geotechnical Engireering., ASCE, 116(5), 774?789.
Elseifi, M. A., Al-Qadi, I. L., Asce, F., & Yoo, P. J. (2006). Viscoelastic Modeling and Field Validation of Flexible Pavements. Journal of Engineering Mechanics, 132 (2).
Elshaer, M., Ghayoomi, M., and Daniel, J.S., 2017. Methodology to evaluate performance of pavement structure using soil moisture profile. Road Materials and Pavement Design, 1?20.
Elshaer, M., Ghayoomi, M., & Daniel, J. S. (2019). Impact of subsurface water on structural performance of inundated flexible pavements. International Journal of Pavement Engineering, 20(8), 947?957.
Fredlund, D.G. and Xing, A., 1994. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31 (4), 521?532.
Khoury, N., 2016. Resilient modulus?moisture content relationships for pavement engineering applications. International Journal of Pavement Engineering, 1?10.
Rahman, M., & Gassman, S. L. (2018). Moisture Effect of Subgrade Resilient Modulus on Pavement Rutting. J. Geotech. Eng, 13.
Pearson, D. (2012). Deterioration and Maintenance of Pavements. Institute of Civil Engineering.
https://doi.org/10.1680/dmp.41141
Perera, Y.Y., et al., 2005. Prediction of the soil-water characteristic curve based on grain-size-distribution and index properties. Geo-Frontiers 2005 ? Austin, TX: ASCE GSP, 49?60.
Salour, F., & Erlingsson, S. (2013). Moisture-sensitive and stress-dependent behavior of unbound pavement materials from in situ falling weight deflectometer tests. Transportation Research Record, 2335, 121?129. https://doi.org/10.3141/2335-13
Singh, A. K., & Sahoo, J. P. (2020). Analysis and design of two layered flexible pavement systems: A new mechanistic approach. Computers and Geotechnics, 117.