Analisis Deteriorasi Perkerasan Jalan Tol Terdampak Banjir dengan Model Markov Chain Transisi Homogen dan Non-Homogen

Authors

  • Danang Saputro Institut Teknologi Bandung
  • Russ Bona Frazila Program Studi Magister Sistem dan Teknik Jalan Raya, Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung
  • Febri Zukhruf Program Studi Magister Sistem dan Teknik Jalan Raya, Fakultas Teknik Sipil dan Lingkungan

DOI:

https://doi.org/10.5614/jts.2025.32.2.13

Keywords:

Flood, deterioration, Markov Chain, Pavement Performance Model

Abstract

Abstrak

Model dan analisis yang mampu meramalkan dampak banjir terhadap kinerja perkerasan jalan raya, sangat penting untuk mengantisipasi penurunan kekuatan struktur perkerasan pasca terjadinya banjir. Model probabilistik, seperti Markov Chain, dianggap lebih realistis daripada model deterministik seperti HDM-III (Patterson), yang kurang sesuai untuk menilai perkerasan jalan tol yang terdiri dari perkerasan kaku dengan lapisan blacktop AC-WC. Penelitian ini bertujuan untuk membandingkan penggunaan model Markov Chain dengan MPT Homogen dan MPT Non-Homogen dalam menganalisis deteriorasi perkerasan jalan tol khususnya jika terdapat kejadian seperti banjir sehingga akan diketahui MPT mana yang lebih sesuai untuk digunakan dalam kondisi tersebut.

Analisis yang dilakukan pada jalan tol Jakarta-Cikampek dan Padaleunyi selama periode tahun 2020-2023 menghasilkan nilai MAPE model Markov Chain dalam kategori akurasi layak/wajar sebesar 25.75% untuk MPT Homogen dan 22.50% untuk MPT Non Homogen. Berdasarkan hal tersebut, model Markov Chain dengan MPT Non Homogen lebih tepat digunakan untuk memodelkan deteriorasi perkerasan jalan tol selama periode terjadinya kejadian khusus misalnya banjir dibandingkan dengan MPT Homogen. Penelitian ini juga menunjukkan perbedaan pola program pemeliharaan (frekuensi dan tingkat penanganan) di mana model Markov Chain menghasilkan luasan proyeksi kebutuhan program pemeliharaan berupa rehabilitasi mayor tahun 2024-2028 lebih besar dibandingkan rencana jangka panjang yang telah disusun menggunakan model deteriorasi IRI HDM-III (Patterson).

Kata-kata Kunci: Banjir, Deteriorasi, Markov Chain, Model Performa Perkerasan.

Abstract

The loss in pavement structural strength following flooding must be predicted using models and analysis that can forecast how flooding would affect highway pavement performance. When evaluating highway pavements made up of stiff pavements with AC-WC blacktop layers, probabilistic models like Markov Chain are seen to be more realistic than deterministic models like HDM-III (Patterson). This study compares the application of Markov Chain models with Homogeneous and Non-Homogeneous TPM in assessing toll road pavement deterioration, particularly during floods, in order to determine whether TPM is more suited for usage in these circumstances.

The analysis of the 2020?2023 Jakarta?Cikampek and Padaleunyi toll roads produced a MAPE value for the Markov Chain model in the acceptable/reasonable accuracy category of 22.50% for the Non-Homogeneous TPM and 25.75% for the Homogeneous TPM. This suggests that, in contrast to the Homogeneous TPM, the Markov Chain model with Non-Homogeneous TPM is more suited for simulating pavement deterioration on toll roads during times of unusual occurrences, such floods. Additionally, this study illustrates differences in maintenance program patterns (frequency and treatment level), with the Markov Chain model generating a larger projection of maintenance program needs in the form of major rehabilitation for 2024-2028 than the long-term plan which was created using the IRI HDM-III (Patterson) deterioration model.

Keywords: Flood, Deterioration, Markov Chain, Pavement Performance Model

Author Biography

Danang Saputro, Institut Teknologi Bandung

Master's Program in Highway Engineering and Development 

Bandung Institute of Technology

 

References

Abaza, K. A. (2016). Back-calculation of transition probabilities for Markovian-based pavement performance prediction models. International Journal of Pavement Engineering, 17(3), 253?264. https://doi.org/10.1080/10298436. 2014.993185

Abaza, K. A. (2017). Empirical Markovian-based models for rehabilitated pavement performance used in a life cycle analysis approach. Structure and Infrastructure Engineering, 13(5), 625?636. https://doi.org/10.1080/15732479.2016.1187180

Abaza, K. A. (2022). Optimal novel approach for estimating the pavement transition probabilities used in Markovian prediction models. International Journal of Pavement Engineering, 23(8), 2809?2820. https://doi.org/10.1080/10298436.2021.1873326

Abaza, K. A., Ashur, S. A., & Al-Khatib, I. A. (2004). Integrated Pavement Management System with a Markovian Prediction Model. Journal of Transportation Engineering, 130(1), 24?33. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:1(24)

Aulia, Y. B. (2023). Analsis Program Preservasi Jalan Terdampak Banjir Menggunakan Model Markov Chain [Tesis]. Institut Teknologi Bandung.

Avil-Rojas, N., Suez, F., Chamorro, A., & Gonzez, A. (2023). Flood impact on structural response of asphalt pavement: A finite element modeling approach. Structures, 57, 105259. https://doi.org/10.1016/j.istruc.2023.105259

Gursoy, B. (2019). Network Level Pavement Deterioration Prediction Modeling For Network Level Pavement Deterioration Prediction Modeling For the City of Syracuse [PHD Thesis]. Syracuse University, United States https://surface.syr.edu/thesis/374.

Haas, R., Hudson, W. R., & Zaniewski, J. P. (1994). Modern pavement management.

Handayani, O. T. (2022). Analisis Pengaruh Banjir terhadap Deteriorasi Perkerasan Berdasarkan Kondisi Permukaannya [Tesis]. Institut Teknologi Bandung.

Hu, A., Bai, Q., Chen, L., Meng, S., Li, Q., & Xu, Z. (2022). A review on empirical methods of pavement performance modeling. Construction and Building Materials, 342, 127968. https://doi.org/10.1016/J.CONBUILDMAT.2022.127968

Issa, A., & Abu Eisheh, S. (2019). Development of Pavement Performance Model for Proper Rehabilitation and Maintenance using First Oorder Markov Chain. Dalam Proc. Interdependence between Structural Engineering and Construction Management (6 ed.). ISEC Press.

Kharbat, S. A., Basheer, M. B., & Hashim, A. Q. M. (2023). A Novel Methodology for Predicting Roadway Deterioration in Iraq. International Journal of Engineering, 36(1), 41?49. https://doi.org/10.5829/IJE.2023.36.01A.06

Khattak, M. J., Landry, C., Veazey, J., & Zhang, Z. (2013). Rigid and composite pavement index-based performance models for network pavement management system in the state of Louisiana. International Journal of Pavement Engineering, 14(7), 612?628. https://doi.org/10.1080/10298436.2012.715643

Kobayashi, K., Do, M., & Han, D. (2010). Estimation of Markovian transition probabilities for pavement deterioration forecasting. KSCE Journal of Civil Engineering, 14(3), 343?351. https://doi.org/10.1007/s12205-010-0343-x

Li, N., Xie, W.-C., & Haas, R. (1996). Reliability-Based Processing of Markov Chains for Modeling Pavement Network Deterioration. Transportation Research Record. Journal of the Transportation Research Board, 1524(1), 203?213. https://doi.org/10.1177/0361198196152400124

Lytton, R. L. (1987). Concepts of pavement performance prediction and modelling. North American Conference on Managing Pavements, 2nd, 1987, Toronto, Ontario, Canada, 2.

Mrawira, D. M., & Amador, L. E. (2008). Performance Modeling for Asset Management: What to do when you only have two data points?

Wang, W., Wang, L., Miao, Y., Cheng, C., & Chen, S. (2020). A survey on the influence of intense rainfall induced by climate warming on operation safety and service life of urban asphalt pavement. Journal of Infrastructure Preservation and Resilience, 1(1), 4. https://doi.org/10.1186/s43065-020-00003-0

Wasiq, S., & Golroo, A. (2024). Probabilistic pavement performance modeling using hybrid Markov Chain: A case study in Afghanistan. Case Studies in Construction Materials, 20, e03023. https://doi.org/10.1016/J.CSCM.2024.E03023

Wuebbles, D., Fahey, D., Hibbard, K., Dokken, D., Stewart BC, & Maycock, T. (2018). Climate science special report: Fourth national climate assessment. Dalam US Global Change Research Program: Washington, DC, USA: Vol. I. US Global Change Research Program.

Yamany, M. S., & Abraham, D. M. (2021). Hybrid Approach to Incorporate Preventive Maintenance Effectiveness into Probabilistic Pavement Performance Models. Journal of Transportation Engineering, Part B: Pavements, 147(1), 04020077. https://doi.org/10.1061/JPEODX.0000227

Zumrawi, M. (2016). Investigating Causes of Pavement Deterioration In Khartoum State. International Journal of Civil Engineering and Technology (IJCIET), 7(2), 203?214. http://iaeme.com/Home/issue/IJCIET?Volume=7&Issue=2

Published

2025-06-26

How to Cite

Saputro, D., Frazila, R. B., & Zukhruf, . F. (2025). Analisis Deteriorasi Perkerasan Jalan Tol Terdampak Banjir dengan Model Markov Chain Transisi Homogen dan Non-Homogen. Jurnal Teknik Sipil, 32(2), 269-272. https://doi.org/10.5614/jts.2025.32.2.13