Proposed New Strong Ground Motion Attenuation Relations for Subduction Zone Earthquakes
DOI:
https://doi.org/10.5614/jts.2004.11.4.1Keywords:
Persamaan atenuasi, Zona subduksi, Jaringan syaraf tiruanAbstract
Abstrak. Tulisan ini menyajikan usulan fungsi atenuasi terbaru untuk percepatan maksimum gempa di permukaan tanah tipe gempa subduksi interface dan intraslab pada moment magnitude lebih besar sama dengan 5 dan jarak 10 km sampai 500 km di batuan. Fungsi atenuasi telah dikembangkan dengan pendekatan Jaringan Syaraf Tiruan (JST) menggunakan algoritma propagasi balik. Studi memperlihatkan bahwa fungsi atenuasi berdasarkan JST akurat dan andal untuk memprediksi percepatan maksimum gempa. Studi parameter berbagai faktor input dari fungsi atenuasi juga telah dilakukan dan hasilnya akan disajikan di dalam tulisan ini.Abstract. This paper present proposed new attenuation relations at rock sites for peak ground acceleration for subduction zone interface and intraslab earthquakes of moment magnitude M 5 and greater and for distance of 10 to 500 km. The relations were developed by Artificial Neural Networks (ANN) approach using a back propagation algorithm. Studies show that the ANN-based attenuation relation is reliable and accurate to predict peak ground acceleration (PGA) due to earthquakes. Parameters studies of the various input factors of attenuation relations were also performed in this study and its results will be presented in this paper.
References
Crouse, C.B.., 1991, "Ground Motion AttenuationEquations for Earthquakes on The Cascadia Subduction Zone" , Eartquake Spectra, 7(2), 201-236.
Fausett, L. V., 1994, "Fundamentals of Neural Networks: Architectures, Algorithms, and Applications" , Prentice-Hall, Inc., Englewood Cliffs, N.J.
Fukushima, Y., and Tanaka, T., 1992, "Revised Attenuation Relation of Peak Horizontal Acceleration by Using A New Data Base" , Programme and Abstracts The Seism. Soc. Japan, No. 2, p.116 (In Japanese).
Garson, G.D., 1991, "Interpreting Neural-Network Connection Weights" AI Experts, page 47-51.
Ghaboussi, et.al., 1990, "Material Modeling with Neural Networks" , Proceedings of The International Conference on Numerical Methods in Engineering: Theory and Applications, Swansea, U.K., 701-717.
Goh, 1996, "Pile Diving Analyzer Using Neural Networks" , Journal ASCE.
Haykin, S., 1994, "Neural Networks: A Comprehensive Foundation" , Prentice-Hall, Inc., Upper Saddle River, N.J.
Hertz, J., et.al., 1991, "Introduction to The Theory of Neural Computations" , Addison-Wesley, Redwood City, California.
Joghataie, A., et.al., 1995, "Learning and Architecture Determination Through Automatic Node Generation" , International Conference on Artificial Neural Networks in Engineering, ANNIE'95, St. Louis, Missouri.
Kramer, S. L., 1996, "Geotechnical Earthquake Engineering" , Prentice-Hall, Inc., Englewood Cliffs, N.J.
McVerry, G.H., et.al, 1998, "New Zealand Attenuation Relations for Crustal and Subduction Zone Earthquakes" , Proceeding on Asian Pacific Workshop on Seismic Design and Retrofit of Structures, 371-385.
Si, H., Midorikawa, S.,, 2000, "New Attenuation Relations for Peak Ground Acceleration and Velocity Considering Effects of Faults Type and Site Condition" , Proceeding on 12th World Conference of Earthquake Engineering (in CDROM), 0532.
Youngs, R.R, et al., 1997, "Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes" , Seismological Research Letters, Volume 68, Number 1, January/February 1997, Seismological Society of America.