Kajian Analitik Pengaruh Beban Termal Terhadap Stabilitas Tiang Pipa Baja
DOI:
https://doi.org/10.5614/jts.2007.14.3.4Keywords:
Stabilitas, Beban termal, Tegangan sisa, Ketidaklurusan tiang, Suhu leleh pertama, Suhu runtuh, Beban antitekuk.Abstract
Abstrak. Kolom pipa baja banyak dijumpai pada bangunan industri, khususnya pada bangunan instalasi kilang minyak. Banyak diantara kolom pipa baja direncanakan untuk beroperasi pada kondisi temperatur tinggi. Perencanaan beban termal hingga 800oC dari struktur pipa baja di lingkungan kilang minyak merupakan perencanaan yang tidak lazim dan ini memerlukan kajian khusus. Makalah ini menyampaikan kajian kondisi khusus dari tiang pipa baja yang ditumpu sederhana dan beroperasi pada beban termal tinggi yang terdistribusi sepanjang pipa hingga 800oC. Perencanaan di bawah aksi temperatur tinggi menjadikan pemecahan persoalan semakin sulit untuk mengikuti kriteria perencanaan yang tersedia. Kondisi ketidaksempurnaan awal kolom, seperti tegangan sisa, dan ketidaklurusan kolom juga merupakan besaran yang turut diperhitungkan di dalam simulasi ini.Stabilitas tiang pipa baja akan menjadi pertimbangan penting di dalam perencanaannya. Metoda numerik berbasis elemen hingga dipergunakan untuk mensimulasikan masalah yang diajukan ini. Hasil analisis menunjukkan bahwa stabilitas tiang pipa baja yang diindikasikan dengan suhu leleh pertama dan suhu runtuh tiang sangat dipengaruhi terutama oleh dimensi dari tiang, ketidaklurusan tiang, tegangan residu, serta distribusi beban termal. Beban antitekuk minimum meningkat nilainya seiring dengan meningkatnya beban termal, namun beban antitekuk maksimum menurun nilainya dengan meningkatnya beban termal.Abstract. Steel pipes are found at almost industrial structures, especially in refinery plant. More and more often, steel pipes have to be designed to operate at higher temperature. Design temperature until 8000C which we find at refinery plant is not uncommon. This paper deals with particular case of pillar of steel pipe which is simply supported and operates at elevated and distributed temperature until 8000C. When the design of temperature is very high, it becomes increasingly difficult to meet the current design criterion. Initial imperfection like residual stress and out-of-straightness is covered in this simulation. In this simulation, initial imperfect column condition such as residual stress, out-of-straightness are considerated as well. Stability becomes to be an important consideration. Numerical method based on finite element is used to simulate this case. The result of the analysis shows that the stability of steel pipe indicated by first yield temperature and collapse temperature are determined especially by dimension of steel pipe, out-of-straightness, residual stress, as well as thermal load distribution. The minimum antibuckle axial force increases with the thermal load, but the opposite condition for the maximum antibuckle axial force.
References
Badan Standardisasi Nasional, 2002, "Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung" , SNI 03-1729-2002.
Barthelemy, B., 1976, "Heating Calculation of Structural Steel Members", Journal Structural Div.
ASCE, 102(8), 1549-1558. Bayazitogulu, Y. and Osizik, M.N., "Element of Heat and Mass Transfer", John Wiley & Sons.
Bazant, Z.P. and Cedolin, L., 1991, "Stability of Structures", Oxford University Press.
Brockenbrough, R.L., 1970, "Theoretical Stresses and Strains from Heat Curving", Journal St. Div ASCE 96(7), 1421-1444.
BSI, 1995, "Eurocode 3 Design of Steel Structures, Part 1.2: General Rules - Structural Fire Design".
Chen, W.F. and Atsuta, T., "Theory of Beam-Columns", McGraw-Hill.
Chung, W. and Ahmad, S.H., 1994, "Model for Shear Critical High Strength Concrete Beams", ACI Structural Journal, Vol. 91, No.1.
Cook, R.D., Malkus, D.S. and Plesha, M.E., 1989, "Concepts and Application of Finite Element Analysis" , John Wiley & Sons.
Crisfied, M.A., 1991, "Non-linear Finite Element Analysis of Solids and Structures", Vol. 1, John Wiley & Sons, England.
Crozier, D.A. and Wong, M.B., 1994, "Collapse Temperature Analysis of Steel Frames", Proceeding of The Australian Structural Engineering Conference, Sidney, 1005-1010.
Crozier, D.A. and Wong, M.B., 1995, "A Solution for Elastoplastic Analysis of Structure under Uniformly Distributed Loads", Proceeding of Fifth Asia-Pasific Conference on Structural Engineering and Construction, Gold Coast, Australia, 91-96.
Edwards, D.K. and Matavosian, R., 1990, "Emissivity Data for Gasses, section 5.5.5, Hemisphere Hand Book of Heat Transfer of Heat Exchanger Design" .
Englerkirk, R., 1993, "Steel Structures Controling Behaviour Through Design", John Wiley & Sons.
Guijit, J., 1990, "Upheaval Buckling of Offshore Pipelines: Overview and Introduction", The 22nd Annual OTC (Offshore Technology Conference), Houston, Texas.
Incropera, F.P. and Dewit, D.P., "Fundamental of Heat and Mass Transfer", John Wiley & Sons.
Kyriakides Stelios, Klever Frans J. and Andrew Palmer C., 1994, "Limit - State Design of Higher-Temperature Pipelines", ASCM.
Pi, Young Li and Trahair, N.S., 1994, "Inelastic Analysis of Steel Beam - Columns. I Theory", Journal of Structural Engineering, ASCE, 2041-2061.
Pi, Young Li and Trahair, N.S., 1994, "Inelastic Analysis of Steel Beam - Columns. II Applications", Journal of Structural Engineering, ASCE, 2041-2061.
Reddy, J.N., 1984, "Energy and Variational Methods in Applied Mechanics", John Wiley & Sons.
Salmon, C.G. and Johnson, J.E., "Steel Structure: Design and Behavior", Harper & Row, Publishers, Inc.
Siegel, R. and Howel, J.R., 1992, "Thermal Radiation Heat Transfer", Hemisphere Publishing Company.
Timoshenko, S.P. and Gere, J.M., 1961, "Theory of Elastic Stability" , McGraw-Hill.
Yang, Yeong Bin and Kuo, Shyh Rong, 1994, "Theory and Analysis of Non-linear Framed Structure", Prentice Hall, New York.
Zienkiewicz, O.C. and Taylor, R.L., 1989 & 1991, "The Finite Element Method" , Volume 1 & 2, McGraw-Hill.