Kajian Teoritis terhadap Persamaan Gelombang Nonlinier
DOI:
https://doi.org/10.5614/jts.2007.14.3.5Keywords:
Persamaan gelombang linier, Teori gelombang yang diturunkan untuk amplitudo gelombang sangat kecil, Teori gelombang nonlinier, Teori gelombang yang diturunkan untuk amplitudo gelombang yang cukup besar.Abstract
Abstrak. Paper ini menyajikan hasil perumusan persamaan gelombang nonlinier dengan prosedur yang lain. Dimana amplitudo gelombang, persamaan momentum dari Euler dan tekanan hidrodinamis dari Bernoulli sepenuhnya digunakan, tanpa pemotongan atau linierisasi. Potensial kecepatan dan persamaan dispersi yang dihasilkan menjadi persamaan gelombang linier bila digunakan amplitudo sangat kecil. Pada persamaan potensial kecepatan terdapat fenomena breaking, dengan bentuk yang sama dengan kriteria breaking dari Miche. Panjang gelombang yang dihasilkan dari persamaan dispersi adalah lebih kecil dari panjang gelombang dari teori gelombang linier. Peranan amplitudo gelombang pada persamaan dispersi adalah memperpendek panjang gelombang. Semakin besar amplitudo gelombang, semakin panjang gelombang.Abstract. This paper presents derivation of a nonlinear wave equation with different procedure. In which, wave amplitude, momentum Euler's equation and hydrodynamic pressure of Bernoulli are fully used and no linearization. The resulted potential and dispersion equation become equations of linier wave theory when small amplitude inserted to the equations. Velocity potential equation gives breaking phenomena that the same as Miche's breaking criteria. Wave length resulted from the dispersion equation shorter than wave length resulted by linear wave theory. Existences of wave amplitude in dispersion equation make wave length shorter. Larger wave amplitude shorter wave length.
References
Bredmese, H., Schaffer, H.A., and Madsen, P.A., 2004, Boussinesq Evolution Equations : "Numerical Efficiency, Breaking and Amplitude Dispersion" , Coastal Engineering.[1]
Chen, Y., and Liu, P.L.-F., 1995, "Modified Boussinesq Equations and Associated Parabolic Models for Water Wave Propagation" , J. Fluid Mech., 288. [2]
Dean, Robert G., and Dalrymple, "Water Wave Mechanics for Engineers and Scientists" , Prentice-Hall, Englewood Cliffs, New Jersey. [3]
Gobbi, M.F., and Kirby, J.T., 1998, "A New Boussinesq Type Model for Surface Water Wave" , Ph.D. Dissertation of the First Author. University of Delaware. [4]
Kirby, J.T., and Wei, G., 1994, "Derivation and Properties of A Fully Nonlinear, Extended Boussinesq Model" . In Proc. IAHR Symposium: Waves - Phys. and Num. Model, Vancouver. [5]
Li, Y.S., Liu, S.-X., Yu, Y.-X., and Lai, G.-Z. 1999, "Numerical Modeling of Boussinesq Equations By Finite Element Method" , J. Coastal Engineering, Elsevier. [6]
Madsen, P. A., Murray, R., and S",rensen, O.R., 1991, "A New Form of Boussinesq Equation with Improved Linear Dispersion Characteristics" , Coastal Engineering 15. [7]
Madsen, P. A., and S",rensen, O.R., 1992, "A New Form Of Boussinesq Equation With Improved Linear Dispersion Characteristics" , Part 2. A Slowly-Varying Bathymetry, Coastal Engineering 18. [8]
McCowan, A.D., 1987, "The Range of Application of Boussinesq Type Numerical Short Wave Models" , In Proc. 22nd IAHR Congr. [9]
Meftah, Sorgent, P., and Gami P., 2004, "Linear Analysis of A New Type of Extended Boussinesq Model" . Coastal Engineering. [10]
Nwogu, O., 1993, "An Alternative Form of The Boussinesq Equations for Nearshore Wave Propagation" . J. Waterway, Port, Coast.. Ocean Engng. 119. [11]
Sarpkaya T. and Iseacson, Micheal, 1981, "Mechanics of Wave Forces on Offshore Structures" , Van Nostrand Reinhold Company. [12]
Schaffer, H. A., Madsen, P.A., 1995, " Further Enhancements of Boussinesq Type Equations" . Coastal Engineering (26). [13]
S",rensen, O.R., Schaffer, H.A., and S",rensen, L.A., 2004, "Boussinesq Modelling Using Unstructural Finite Element Technique" . Coastal Engineering. [14]
Wei, G., Kirby, J.T., Grilli, S.T., and Subramanya, R., 1995, "A Fully Nonlinear Boussinesq Model For Surface Waves" , Part 1, Highly Nonlinear Unsteady Waves. J. Fluid Mech. 294. [15]