Development of Pre-consolidation Pressure Dependence of Mixed Hardening Multisurface Hyperplasticity Model for Better Prediction of Earthquakes Ground Response Analysis
DOI:
https://doi.org/10.5614/jts.2011.18.3.4Keywords:
Hyperplasticity, Mixed hardening, Pre-consolidation pressure, Ground response analysis.Abstract
Abstract. It was known that soil behavior is dependent upon the history of loading and exhibits hardening behavior when deformed plastically. This paper presents a formulation of mixed hardening multisurface hyperplasticity model with stiffness factors of the kinematic hardening of the yield surfaces proportional to the pre-consolidation pressure to represent the history of loading. Formulation is emphasized for describing the cyclic loading behavior of clay soils. The advantages of this approach are that it can reproduce smooth transitions from elastic to plastic behavior and allows the stress-reversal history to be memorized by the internal variable function. The Modified Cam Clay yield function is selected as a key model to simulate the stress-strain response.The incremental stress"?strain response is calculated based on a rate-dependent formulation. Finally, this paper describes the importance of development of the formulated soil model to improve current constitutive models for evaluating the effects of local soil conditions on earthquake ground response analysis. Further results of numerical implementation and simulations and also model verification employing the proposed mathematical model formulation will be reported in a future publication.
Abstract. Telah diketahui bahwa perilaku tanah akan tergantung dari sejarah pembebanannya dan juga memperlihatkan perilaku hardening apabila tanah mengalami deformasi secara plastik. Tulisan ini menyajikan sebuah formulasi model tanah mixed hardening multisurface hyperplasticity dengan faktor kekakuan kinematik hardening proporsional terhadap tekanan pra-konsolidasi guna merepresentasikan sejarah pembebanan yang terjadi pada tanah. Formulasi ditekankan untuk mendeskripsikan perilaku pembebanan siklik pada tanah lempung. Kelebihan dari pendekatan model hyperplasticity ini adalah dapat menghasilkan transisi dari perilaku elastik ke plastik secara smooth serta mampu "mengingat" sejarah perubahan tegangan yang terjadi pada tanah dengan menggunakan fungsi variabel internal. Fungsi leleh Modified Cam Clay dipilih sebagai model utama untuk mensimulasikan respons tegangan-regangan. Selanjutnya, respons tegangan-regangan dihitung berdasarkan sebuah formulasi rate-dependent. Terakhir, tulisan ini mendeskripsikan pentingnya pengembangan model ini guna memperbaiki analisis respons tanah akibat gempa. Hasil-hasil lebih lanjut berupa implementasi dan simulasi numerik serta juga verifikasi model yang diusulkan akan disajikan dalam publikasi berikutnya.
References
Apriadi, D., 2009, Development and Numerical Implementation of Thermodynamics-based Soil Model, Ph.D. Thesis, Chulalongkorn University.
Apriadi, D., Likitlersuang, S., Pipatpongsa, T. and Ohta, H.. 2009, On The Numerical Implementation of Hyperplasticity Non-Linear Kinematic Hardening Modified Cam Clay Model, The IES Journal Part A: Civil & Structural Engineering, Vol. 2, No. 3, pp. 187-201.
Bardet, J.P., Ichii, K., and Lin, C.H., 2000. EERA, A Computer Program for Equivalent linear Earthquake site Response Analysis of Layered Soils Deposits, Los Angeles: University of Southern California.
Bardet, J.P., and Tobita, T., 2001, NERA, A Computer Program for Nonlinear Earthquake Site Response Analyses of Layered Soil Deposits, Los Angeles: University of Southern California.
Butterfield, R., 1979, A Natural Compression Law for Soils (an advance on e-log p'), Geotechnique 29, No. 4, 469-480.
Collins, I.F., Kelly, P.A., 2002, A Thermomechanical Analysis of A Family of Soil Models. Geotechnique 52, No. 7, 507-518.
Dafalias, Y.F., Popov, E.P., 1975, A Model of Nonlinearly Hardening Materials for Complex Loading, Acta Meek 23, 173-192.
Dunne, F., and Petrinic, N., 2005, Introduction to Computational Plasticity, London : Oxford University Press.
Einav, I. and Carter, J.P., 2007, On Convexity, Normality, Pre-consolidation Pressure, and Singularities in Modeling of Granular Materials, Granular Matter 9, 87-96.
Griffiths, D.V., 1980, Finite Element Analyses of Walls, Footings and Slopes, Ph.D. Thesis, University of Manchester.
Hashiguchi, K., 1974, Isotropic Hardening Theory of Granular Media. Proc. JSCE 227, 45-60.
Hashiguchi, K., Ueno, M., 1977, Elastoplastic Constitutive Laws of Granular Materials, Constitutive Equations of Soils. Tokyo, In: Murayama, S., Schofield, A.N. (eds.) Proc. 9th Int. Conf. Soil.
Mech. Found. Eng., Spec. Ses. 9, JSSMFE, pp. 73-82.
Hashiguchi, K., 1989, Subloading Surface Model in Unconventional Plasticity. Int. J. Solids Structures 25, 917-945.
Houlsby, G.T., Amorosi, A. and Rojas, E., 2005, Elastic Moduli of Soils Dependent on Pressure: A Hyperelastic Formulation, Geotechnique, Vol. 55, No. 5, pp 383 - 392.
Houlsby, G.T., and Puzrin, A.M., 2006, Principles of Hyperplasticity: An Approach to Plasticity Theory Based on Thermodynamics Principles, London : Springer-Verlag, London Limited.
Iwan, W.D., 1967, On A Class of Models for The Yielding Behavior of Continuous and Composite Systems, J. Appl. Meek. (ASME) 34, 612-617.
Joyner, W.B., 1977, NONLI3: A Fortran Program for Calculating Nonlinear Ground Response, Open File Report 77-761, California: U.S. Geological Survey, Menlo Park.
Kramer, S.L., 1996, Geotechnical Earthquake Engineering, New Jersey: Prentice Hall.
Lee, M.K.W., and Finn, W.D.L., 1978, DESRA-2: Dynamic Effective Stress Response Analysis of Soil Deposits with Energy Transmitting Boundary Including Assessment of Liquefaction Potential, Vancouver: Soil Mechanics Series, No. 38, University of British Columbia.
Likitlersuang, S., and Houlsby, G.T., 2006, Development of Hyperplasticity Model for Soil Mechanics, International Journal for Numerical and Analytical Method in Geomechanics, No. 30, pp 229 - 254.
Likitlersuang, S., 2003, A Hyperplasticity Model for Clay Behaviour: An Application to Bangkok Clay, Oxford University: D.Phil. Thesis.
Martin, P.P., and Seed, H.B., 1978, MASH: A Computer Program for The Nonlinear Analysis of Vertically Propagating Shear Waves in Horizontally Layered Soil Deposits, California: Report No. UCB/EERC-78/23, Earthquake Engineering Research Center, University of California, Berkeley.
Mroz, Z., 1967, On The Description of Anisotropic Workhardening, J. Mech. Phys. Solids 15, 163-175.
Pyke, R.M., 1985, TESS1: A Computer Program or Nonlinear Ground Response Analysis, California: User Manual, TAGA Engineering Software Services, Lafayette.
Prevost, J.H., 1989, DYNA1D: A Computer Program for Nonlinear Seismic Site Response Analysis-Technical Documentation, Multidisciplinary Center for Earthquake Engineering Research, Report NCEER-89-0025.
Roscoe, K.H., and Burland, J.B., 1968, On The Generalised Stress-Strain Behaviour of Wet Clay, Engineering Plasticity, Cambridge University Press, pp 535-610.
Schnabel, P.B., Lysmer, J., and Seed, H.B., 1972, SHAKE: A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites, University of California, Berkeley: Report No. UCB/EERC-28 -72/12, EarthquakeEngineering Research Center, December, 102p.
Schofield, A.N., and Wroth, C.P., 1968, Critical State Soil Mechanics, London: McGraw Hill.
Streeter, V.L., Wylie, E.B., and Richart, F.E., 1973, Soil Motion Computations By Characteristics Methods, San Francisco: Proc. ASCE National Structural Engineering Conference.
Zienkiewicz, O.C., and Cormeau, I.C., 1974, Viscoplasticity, Plasticity and Creep in Elastic Solids-A Unified Numerical Solution Approach, Int. Jnl. Num. Meth. Eng. Vol.8, pp 821-845.