Studi Kelakuan Dinamis Struktur Jembatan Penyeberangan Orang (JPO) Akibat Beban Individual Manusia Bergerak

Authors

  • Endah Wahyuni Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Institut Teknologi Sepuluh Nopember Kampus ITS Sukolilo, Surabaya.

DOI:

https://doi.org/10.5614/jts.2012.19.3.1

Keywords:

Beban hidup, Manusia bergerak, Dinamis, Jembatan penyeberangan orang.

Abstract

Abstrak. Penelitian ini bertujuan mengetahui pengaruh beban manusia bergerak pada struktur JPO beton dan baja. Manusia sebagai beban dinamis sangat mempengaruhi dalam merencanakan jenis struktur tertentu, seperti stadion, lantai gedung olahraga, atau JPO. Apabila beban manusia tersebut tidak dipertimbangkan sebagai beban dinamis maka dapat menjadi penyebab kegagalan struktur. Dalam studi ini dilakukan pemilihan model beban akibat manusia bergerak dari literature yang ada. Dalam penelitian ini dibatasi hanya pada model beban manusia individu. Dengan menggunakan software SAP2000, pembebanan ini akan dihitung secara dinamis, sehingga akibat orang yang bergerak akan menghasilkan reaksi vertikal dan horisontal serta berubah terhadap waktu. Selanjutnya dilakukan pengujian nilai frequensi alami dari jembatan yaitu pada uji kasus dilakukan JPO beton dan JPO baja di Surabaya. Untuk mode pertama, bentuk getaran dari struktur JPO beton didominasi oleh arah horizontal dengan frekuensi alami 2.75 Hz. Sedangkan untuk struktur JPO baja didominasi oleh arah vertikal dengan frekuensi alami 7.675 Hz. Kedua struktur memiliki nilai frekuensi alami yang memenuhi ketentuan British Standard dan diketahui pula bahwa tidak terjadi resonansi pada struktur JPO akibat beban manusia berjalan. Dengan adanya penelitian ini diharapkan kelakuan dinamis struktur jembatan penyeberangan orang akibat beban manusia yang bergerak bisa lebih dipahami.

Abstract. This study aimed to investigate the effect of human-induced dynamic loads on steel and concrete footbridges. The dynamic loads would greatly affect to design of certain types of structures such as stadium, floor for dance or sport, or footbridge. If the kind of loads was not considered in the design as dynamic loads that could be the cause of structural failure. The model of the dynamic loads was found from the existing literature. The human loads were limited to individual model in this study. The dynamic responses of footbridge structures were investigated using SAP2000 and showed that the concrete bridge is less stiff than the steel bridge based on the natural frequencies. The results also showed that the first mode of the concrete footbridge was dominated by horizontal direction with the natural frequency of 2.75 Hz. While the first mode of the steel footbridge was dominated by the vertical direction with natural frequency of 7.675 Hz. Both structures had the natural frequencies which complied with the British Standard and also found that there was no resonance on both footbridges due to human-induced dynamic loads. From the acquisition of some of the above conclusions, it was expected that the dynamic behavior of the footbridge due to the human dynamic loads could be better understood.

References

BMS, 1992, Bridge Desaign Code Vol. 1, Bridge Management System, Jakarta: Dinas Pekerjaan Umum.

BSI (British Standard Institution), 1978, Steel, Concrete and Composite Bridges; Part 1 - General Statement, BS 5400-1, BSI, London, UK.

BSI (British Standard Institution), 2005, Human response to vibration - Measuring instrumentations, BS EN ISO 8041: 2005, BSI, London, UK.

Brownjohn, J.M.W., Pavic, A., 2007, Experimental methods for estimating modal mass in footbridges using human-induced dynamic excitation, Elsevier, Engineering Structures, 29(21): 2833-2843.

Chopra, A.K., 2007, Dynamics of Structures, Theory and Applications to Earthquake Engineering, 3rd Edition, London, UK: Pearson Education Ltd.

Dallard, P., Fitzpatrick, A.J., Flint, A., Lee Bourva, S., 2001, The London Millenium Footbridge, IstructE, The Structural Engineer, UK, 79 (22): 17-33.

El-Dardiry, E., 2003, Floor Vibration Induced by Walking Loads. PhD thesis, Manchester, University of Manchester.

Ellis, B.R., 2003, The Influence of Crowd Size on Floor Vibrations Induced by Walking, The Structural Engineering 81(6): 20 - 27.

Ellis, B.R., and Ji, T., 2004, Load generated by jumping crowds: numerical modelling, The Structural Engineer 82(17):35 - 40.

Figueiredo, et al, 2008, A Parametric Study of Composite Footbridges Under Pedestrian WalkingLoads, Engineering Structures, 30(3), 605-615.

ISO, 1989, ISO 2631-2. Evaluation of Human Exposure to Whole-body Vibration, International Standards Organisation.

Litter, J.D., 2003, Frequencies of Synchronized Human Loading from Jumping and Stamping. IStrucE, The Structural Engineer, 81(11): 27-35

Piccardo, G., Tubino, F., 2008, Parametric Resonance of Flexible Footbrisges Under Crowd-Induced Lateral Excitation, Journal of Sound and Vibration, 311: 353-371.

SNI-T-02-2005, 2005, Standar Pembebanan untuk Jembatan, Bandung: Badan Litbang Pemukiman dan Prasarana Wilayah.

Wahyuni, E., 2007, Static Stiffness and Modal Stiffness of a Strukture, PhD thesis, University of Manchester, Manchester, UK.

Wahyuni, E, 2009a, Using Dynamic Measurements to Predict Structural Responses of a Composite Floor Induced by an Individual Walking Load.

The 1st International Seminar on Sustainable Infrastructure and Built Environment in Developing Countries, November 2-3, 2009, Bandung - Indonesia.

Wahyuni, E, 2009b, Structural Responses of a Concrete Beam Subjected to Human Dynamic Load. Engineering and Science International Conference, November 24-25, 2009, Curtin University of Technology, Sarawak Campus, Miri, Sarawak.

Wyatt, T.A., 1989, Design Guide on The Vibration of Floors, London, UK: Ascot, Steel Construction Institute.

Downloads

Published

2012-12-01

How to Cite

Wahyuni, E. (2012). Studi Kelakuan Dinamis Struktur Jembatan Penyeberangan Orang (JPO) Akibat Beban Individual Manusia Bergerak. Jurnal Teknik Sipil, 19(3), 181-194. https://doi.org/10.5614/jts.2012.19.3.1

Issue

Section

Articles