Settlement of a Full Scale Trial Embankment on Peat in Kalimantan: Field Measurements and Finite Element Simulations

Authors

  • Endra Susila Soil Mechanics Laboratory, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung Jl. Ganesa No. 10, Bandung 40132, Indonesia.
  • Dayu Apoji AECOM Singapore Pte. Ltd. 300 Beach Road, #03-00 The Concourse, Singapore 199555, Singapore; Formerly Graduate Research Assistant, Soil Mechanics Laboratory, Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung 40132, Indonesia.

DOI:

https://doi.org/10.5614/jts.2012.19.3.6

Keywords:

Peat, Trial embankment, Full scale, Field test, Numerical analysis, Finite element method, Constitutive model, Elastic perfectly plastic, Hardening-soil, Kalimantan, Indonesia.

Abstract

Abstract. This paper presents a study result of peat behaviors through numerical analysis using the finite element method verified by full scale field measurements. Site investigation, construction, instrumentation and monitoring of a trial embankment on very compressible fibrous tropical peat layers at Bereng Bengkel in Central Kalimantan have been conducted by the Agency of Research and Development, the Indonesia Ministry of Public Works. Settlement responses of the embankment have been investigated by a series of finite element simulations using two different soil constitutive models: elastic perfectly plastic model with the Mohr-Coulomb criteria and hyperbolic Hardening-Soil model. A half space finite element model has been developed using the effective stress approach. Analyses were performed with the coupled static/consolidation theory. The soil parameters, embankment geometry, construction sequence and consolidation time of peats and clays were modeled in accordance with actual field trial embankment conditions. Implementation of the numerical model and simulations has completely been performed by a computer program, PLAXIS 2D. For ground settlement behavior at center of embankment, this study result shows that both soil constitutive models have reasonably produced suitable deformation behaviors. However, the settlement behaviors at embankment toes are not as accurate as they are at center.

Abstrak. Makalah ini menyajikan studi perilaku gambut melalui analisis numerik berdasarkan metode elemen hingga yang diverifikasi dengan pengukuran lapangan skala penuh. Investigasi lokasi, konstruksi, instrumentasi dan pengukuran timbunan di atas lapisan gambut tropis berserat yang sangat kompresibel di Bereng Bengkel, Kalimantan Tengah, telah dilakukan oleh Departemen Penelitian dan Pengembangan dari Departemen Pekerjaan Umum Indonesia. Respon penurunan timbinan ini telah dianalisis melalui serangkaian simulasi numerik elemen hingga menggunakan dua model konstitutif tanah: model elastis plastis sempurna dengan kriteria keruntuhan Mohr-Coulomb dan model hiperbolik Hardening-Soil. Model elemen hingga setengah ruang telah dibuat dengan pendekatan tegangan efektif. Seluruh tahapan simulasi telah diperhitungkan sebagai analisis statis/konsolidasi couple. Parameter tanah, geometri timbunan, tahapan konstruksi dan waktu konsolidasi gambut dan lempung dimodelkan sesuai dengan kondisi lapangan. Implementasi dari model dan simulasi numerik ini telah dilakukan menggunakan program komputer PLAXIS 2D. Untuk perilaku penurunan tanah di tengah timbunan, studi ini menunjukkan bahwa kedua model konstitutif tanah dapat menghasilkan perilaku deformasi yang cukup sesuai. Namun, prediksi perilaku penurunan tanah di kaki timbunan tidak seakurat prediksi perilaku di tengah timbunan.

References

Apoji, D., Susila, E., 2012, Couple Behaviors of Clays: Laboratory Test and Numerical Simulations. Proceedings of the 16th Annual Scientific Meeting, HATTI (ISGE), (pp. 227-233). Jakarta.

Bell, F.G., 2000, Engineering properties of soils and rocks, 4th Ed. Oxford, London: Blackwell Science.

Berry, P.L., Vickers, B., 1975, Consolidation of Fibrous Peat, Journal of Geotechnical Engineering, ASCE, 101: 741-753.

Bowles, J.E., 1996, Foundation Analysis and Design, 5th Ed. The McGraw-Hill Companies, Inc.

Brinkgreve, R.B., Broere, W., and Waterman, D., 2006, Manual PLAXIS 2D - Version 8. Delft, Netherlands: PLAXIS bv.

Colleselli, F., Cortellazzo, G., and Cola, S., 2000, Laboratory Testing of Italian Peat Soils. In Edil, T.B. and Fox, P.J., Geotechnics of High Water Content Materials, ASTM STP 1374. West onshohocken, PA: American Society for Testing and Materials.

Das, B.M., 2002, Principles of Geotechnical Engineering. Pacific Grove, CA: Brooks Cole/Thompson Learning.

Dhowian, A.W., Edil, T.B., 1980, Consolidation Behavior of Peats. Geotechnical Testing Journal, 105-114.

Edil, T.B., 2003, Recent Advances in Geotechnical Characterization and Construction Over Peats and Organic Soils. Malaysia: Proceedings of the 2nd International Conference in Soft Soil

Engineering and Technology, Putrajaya.

Ferrel, E.R., Hebbib, S., 1998, The Determination of The Geotechnical Parameters of Organic Soils. Japan: Proceedings of International Symposium on Problematic Soils, IS-TOHOKU, (pp. 33-36). Sendai.

Final Report IGMC Guide Phase 1, 1998, Bandung: Agency of Research and Development Ministry of Public Works Indonesia.

Fox, P.J. and Edil, T.B., 1996, Effects of Stress and Temperature on Secondary Compression of Peat, Canadian Geotechnical Journal, 33: 405-415.

GeoGuide, 2002, Jakarta: Ministry of Settlement and Regional Infrastructure.

Gofar, N., Sutejo, Y., 2007, Long Term Compression Behavior of Fibrous Peat, Malaysian Journal of Civil Engineering, 19: 104-116.

Gosling, D., Keeton, P., 2008, Problems with Testing Peat for Stability Analysis. Peat Seminar. Edinburg.

Hatlen, J., Wolski, J., 1996, Embankments on Organic Soils, 1st Ed. USA: Elsevier.

Huat, B.B., Asadi, A., and Kazemian, S., 2009, Experimental Investigation on Geomechanical Properties of Tropical Organic Soils and Peat, American Journal of Engineering and Applied Science, 184-188.

Karlsson, R., Hansbo, S., 1981, Soil Classification and Identification, 1st Ed. Stockholm: Swedish Council for Building Research.

Keene, P., Zawodniak, C.D., 1968, Embankment Construction on Peat Utilizing Hydraulic Fill, Sngapore: Proceedings of the 11th Southeast Asian Geotechnical Conference, (pp. 45-50).

Kogure, K., Yamaguchi, H., and Shogaki, T., 1993, Physical and Pore Properties of Fibrous Peat Deposit. Singapore: Proceedings of the 1th Southeast Asian Geotechnical Conference.

Kulhawy, F.H., Mayne, P.H., 1990, Manual on Estimating Soil Properties for Foundation Design, Report EL-6800 Electric Power Research Institute. EPRI.

Kuthilaka, S.A., 999, Improvement of Engineering Properties of Peat by Preconsolidation, South Korea: Proceedings of the Asian Regional Conference of Soil Mechanics and Geotechnical Engineering, (pp. 97-100).

Landva A.O. and Pheeney, P.E., 1980, Peat Fabric and Structure, Geotechnique, 17:416-435.

Lea, N.D., Brawner, C.O., 1963, Highway Design and Construction Over Peat Deposits in Lower British Columbia, Highway Res. Record, 7: 1-32.

Lefebvre, G., Langlois, P., Lupien, C., and Lavallee, J. G., 1984, Laboratory Testing and in Situ Behaviour of Peat as Embankment Foundation, Canadian Geotechnical Journal, 21: 322-337.

McGeever, J., 1987, The Strength Parameters of an Organic Silt, MSc Thesis. University of Dublin, Trinity College.

Progress Report IGMC Guide Phase 2, 2001, Bandung: Agency of Research and Development, Ministry of Public Works Indonesia.

Rowe, R.K., MacLean, M.D., and Barsvary, A.K., 1984a, The Observed Behaviour of A Geotextile-Reinforced Embankment Constructed on peat. Canadian Geotechnical Journal, 21: 289-304.

Rowe, R.K., MacLean, M.D., and Soderman, K.L., 1984b, Analysis of A Geotextile-Reinforced Embankment Constructed on Peat, Canadian Geotechnical Journal, 21: 563-576.

Schanz, T., and Vermeer, P.A., 1998, Special Issue on Pre-Failure Deformation Dehaviour of Geomaterials. Geotechnique, 48, 383-387.

Schanz, T., Vermeer, P.A., and Bonnier, P.G., 1999, The Hardening-Soil Model: Formulation and Verification, In Brinkgreve, R.B., Beyond 2000 in Computational Geotechnics (pp. 281-290), Rotterdam: Balkema.

Siavoshnia, M., Kalantari, F., and Shakiba, A., 2010, Assesment of Geotextile Reinforced Embankment on Soft Clay Soil, Proceedings of The 1st International Applied Geological Congress, Department of Geology, Islamic Azad University, (pp. 1779-1784), Mashad Branch, Iran.

Termaat, R. J., 1994, General Report: Session 2: Stress-Strain and Strength Behaviour, In Al, D.H., Advance in The Understanding and Modeling The Mechanical Behaviour of Peat (pp. 311-326), Rotterdam: Balkema.

Terzaghi, K., Peck, R.B., and Mesri, G., 1996, Soil Mechanics in Engineering Practice, 3rd Ed New York: Wiley & Sons.

Warburton, J., Holden, J., and Mills, A.J., 2004, Hydrological Controls of Surficial Mass Movements in Peat, Earth Science Review, 139-156.

Weber, W.G., 1969, Performance of Embankments Constructed Over Peat, Journal of Soil Mech. Found. Div., 53-76.

Wong, L.S., Hashim, R., and Ali, F.H., 2009, A Review on Hydraulic Conductivity and Compressibility of Peat, Journal of Applied Sciences, 9 (18): 3207-3218.

Downloads

Published

2012-12-01

How to Cite

Susila, E., & Apoji, D. (2012). Settlement of a Full Scale Trial Embankment on Peat in Kalimantan: Field Measurements and Finite Element Simulations. Jurnal Teknik Sipil, 19(3), 249-264. https://doi.org/10.5614/jts.2012.19.3.6

Issue

Section

Articles