Model Jaringan Saraf Tiruan Kuat Tekan Beton Porus dengan Material Pengisi Pasir

Authors

  • Ridho Bayuaji Program Studi D3 Teknik Sipil - Fakultas Teknik Sipil dan Perencanaan - Institut Teknologi Sepuluh Nopember Surabaya, Kampus Manyar ITS, Jl Menur 127 Surabaya 60116.
  • Totok R. Biyanto Teknik Fisika - Fakultas Teknologi Industri - Institut Teknologi Sepuluh Nopember Surabaya, Kampus ITS Keputih, Sukolilo, Surabaya 60111,

DOI:

https://doi.org/10.5614/jts.2013.20.1.3

Keywords:

Jaringan saraf tiruan, Densitas, Beton porus, Rasio pasir-semen.

Abstract

Abstrak. Beton porus adalah salah satu beton ringan dan bentuk dasarnya merupakan perpaduan antara pasir, semen, air (campuran dasar) dan foam (biasanya 0,1-1,0 mm diameter). Penelitian ini difokuskan pada aplikasi jaringan saraf tiruan (JST) untuk memprediksi kuat tekan beton porus. Metode JST dapat menangkap interaksi yang kompleks antara variabel input/output dalam suatu sistem tanpa pengetahuan sebelumnya dari sifat interaksi dan tanpa harus secara eksplisit mengasumsikan bentuk model. Makalah ini menjelaskan data penelitian yang ada, seleksi data dan proses pelatihan model JST, dan validasi. Hasil penelitian menunjukkan bahwa kuat tekan beton porus dapat diprediksi lebih akurat, mudah dan cepat dari densitas beton porus, rasio pasir dan semen dan distribusi ukuran partikel pasir.

Abstract. Foamed concrete is one of light concrete and its basic form is a blend of sand, cement, water (the base mix) and a pre-formed foam (usually 0.1 to 1.0 mm in diameter). This research focus on application of artificial neural networks (ANN) to predict the compressive strength of foamed concrete mixtures. The ANN method can capture complex interactions among input/output variables in a system without any prior knowledge of the nature of these interactions and without having to explicitly assume a model form. Indeed, such a model form is generated by the data points themselves. This paper describes the database assembled, the selection and training process of the ANN model, and its validation. Results showed compressive strength of foamed concrete can be predicted much accurately, easy and fast from density of foamed concrete, sand and cement ratio and particle size distribution of sand.

References

ASTM-C230, 2003, Standard Specification for Flow Table for Use in Tests of Hydraulic Cement.

Biyanto, TR., Santosa, HH, 2004, Modeling of Methanol-Water Binary Distillation Column Using A Neural Network, Jakarta: Journal Instrumentasi Vol. 28 No. 1, Instrumentation Society of Indonesia.

Cybenko G., 1989, Approximation by Super-position of A Sigmoid Function, Mathematics of Control, Signal, and Systems, Vol. 2(4), 303-314.

Hamidah, I., Azmi, Ruslan, A., Kartini, K., and Fadhil, N.M., 2005, Optimisatiom of Foamed Concrete Mix of Different Sand-Cement Ratio and Curing Conditions, Proceeding from the int. Conference "Global Construction: Ultimate Concrete Opportunities, Dundee, 5-7 July 2005, Thomas Telford.

Hoff, G.C., 1972, Porosity-strength Considerations for Cellular Concrete, Cement and Concrete Research, Vol. 2: p. 91-100.

Kearsley, E.P., and Wainwright, P.J., 2001, Porosity and Permeability of Foamed Concrete, Cement and Concrete Research, 31(5): p. 805-812.

Kearsley, E.P., and Wainwright, P.J., 2002, The Effect of Porosity on the Strength of Foamed Concrete, Cement and Concrete Research, 32 (2): p. 233-239.

Kearsley, E.P., and Mostert, H.F., 2005, Designing Mix Composition of Foamed Concrete With High Fly Ash Contents, Proceeding from the int. Conference "Global Construction: Ultimate concrete opportunities, Dundee, 5-7 July 2005, Thomas Telford.

Murray, R., Neumerkel, D., Sbarbaro, D., 1992, Neural Networks for Modeling and Control of A Non-Linear Dynamic System. Proceedings of the 1992 IEEE International Symposium on Intelligent Control, Glasgow, Scotland, pp. 404-409.

Nambiar, E.K.K. and Ramamurthy, K., 2008, Models for Strength Prediction of Foam Concrete. Materials and Structures. 41: p. 247-54.

Nehdi, M., Djebbar, Y., and Khan, A., 2001, Neural Network Model for Preformed-Foam Cellular Concrete, ACI Materials Journal, September-October, 402-409.

Norgaard, M., Ravn, O., Poulsen, N.K., and Hansen L.K., 1999, Neural Network for Modelling and Control of Dynamic Systems, Springer London.

Ramamurthy, K., Nambiar, E.K.K., and Ranjani, G.I.S., 2009, A Classification of Studies on Properties of Foam Concrete. Cement & Concrete Composites, Volume 31(Issue 6): p. 388-396.

Tam, C.T., Lim, T.Y., Sri Ravindrarajah, R., and Lee, S.L., 1987, Relationship Between Strength and Volumetric Composition of Moist-Cured Cellular Concrete, Magazine of Concrete Research. 39: p. 12-18.

Tarun R.N., 2005, Environmental-Friendly Durable Concrete Made with Recycled Materials for Sustainable, Toronto, Canada.

Downloads

Published

2013-04-01

How to Cite

Bayuaji, R., & Biyanto, T. R. (2013). Model Jaringan Saraf Tiruan Kuat Tekan Beton Porus dengan Material Pengisi Pasir. Jurnal Teknik Sipil, 20(1), 23-32. https://doi.org/10.5614/jts.2013.20.1.3

Issue

Section

Articles