Variabilitas Spasial Hujan Harian di Jawa Timur
DOI:
https://doi.org/10.5614/jts.2013.20.2.4Keywords:
Histogram, QQ-Plot, Hujan-24jam-maksimal, Hari-hujan, Interpolasi data, Distibusi spasial, Jawa Timur.Abstract
Abstrak. Dua variabel digunakan untuk memaparkan variabilitas spasial hujan harian di Jawa Timur, yaitu: (1) Hujan-24jam-maksimal dan (2) Hari-Hujan. Data hujan diperoleh dari 946 lokasi stasiun hujan yang tersebar merata di seluruh wilayah Provinsi. Analisis spasial dilakukan menggunakan ESDA (Exploratory Spatial Data Analysis) yang ada pada ArcGIS Geostatistical Analyst. Tool yang digunakan mencakup: Histogram dan QQ-Plot. Selanjutnya, peta distribusi spasial (hujan-24jam-maksimal dan hari-hujan) di seluruh wilayah Jawa Timur dibuat dengan menggunakan metode Interpolasi Inverse Distance Weigthing (IDW). Hasil analisa menunjukkan Histogram dan Normal QQ-Plot untuk hari-hujan mendekati distribusi normal, sedangkan untuk hujan-24jam-maksimal lebih condong ke kanan. Statistik nilai hujan-24jam-maksimal yang diperoleh adalah: minimal = 32 mm, rerata = 137 mm, maximum = 332 mm, and median = 130 mm/hari. Nilai ringkasan distribusi statistik lainnya adalah: standar deviasai = 50,37; koefisien kemencengan = 0,99; dan koefisien kurtosis = 4,3. Statistik untuk variabel hari-hujan, menunjukkan nilai minimal = 4 hari/tahun dan maksimal = 184 hari/tahun. Sedangkan, nilai rerata = 81 hari/tahun dan nilai median = 80 hari/tahun. Histogram juga menampilkan nilai standar deviasi = 23,74; koefisien skewness = 0,28; dan koefisien curtosis = (3,6). Penelitian menunjukkan kemampuan dan manfaat ESDA untuk menggambarkan variabilitas spasial hujan harian dengan lebih detail.Abstract. Two variabel (maximum-24hour-rainfall and number of rainfall-day) were used to describe the spatial variabiity of Daily Rainfall phenomena in East Java regions. Daily rainfall data were collected from 946 pluviometres spread around the regions. Spatial analyst were exploited by means of Exploratory Spatial Data Analysis (ESDA) available at ArcGIS Geostatistical Analyst. Histogram and QQ-Plot were used for the analysist. Furthermore, thematic map visualized the spatial variability of daily rainfall data over the region was produced using Inverse Distance Weighting (IDW) interpolation method. Results shows that both Histogram and Normal QQ-Plot for number-ofrainffal-day are close to normal distribution, however spatial distribution of 24-hour rainfall data is quitely distorsed to standard normal distribution. Statistical resume obtained from 24hour-rainfall data are : minimum = 32 mm/day, average = 137 mm/day, maximum = 332 mm/day, median = 130 mm/day, standard deviation = 50,37, coefficient of skewness = 0,99, and Coefficient of Curtosis = 4,3. Other statistical value resumed from number of rainy-day are : minimum = 4 day/year, average = 81 day/year, maximum = 184 day/year, and median = 80 day/year, standard deviation = 23,74, coefficient of skewness = 0,28, and Coefficient of curtosis = 3,6. The research demonstrate the capability and benefit of those statistical tool to describe spatial variability of daily rainffal phenomenon in East Java Regions.
References
De Smith, M.J., Goodchild, M.F., and Longley, P.A., 2007, Geospatial Analysis. A Comprehensive Guide to principles, Techniques and Software Tools. Matador, Leiceister, UK [www.spatialanalysisonline.com].
Dirks, K.N, Hay, J.E., Stow, C.D., and Harris, D., 1998, High-Resolution Studies of Rainfall on Norfolk Island: Part II: Interpolation of Rainfall Data. Journal of Hydrology, Volume 208,
Issues 3-4, 31 July 1998, Pages 187-193.
Ellouze, M., Azri, C., and Abida, H., 2009, Spatial Variability of Monthly and Annual Rainfall Data Over Southern Tunisia. Atmospheric Research, Volume 93, Issue 4, August 2009, Pages 832-839.
Goovaerts, P., 2000, Geostatistical Approaches for Incorporating Elevation Into the Spatial Interpolation of Rainfall. Journal of Hydrology, Volume 228, Issues 1-2, 21 February 2000, Pages
-129.
Haberlandt, U., 2007, Geostatistical Interpolation of Hourly Precipitation from Rain Gauges and Radar for A Large-Scale Extreme Rainfall Event. Journal of Hydrology, Volume 332, Issues
-2, 1 January 2007, Pages 144-157.
http://regal.sdsu.edu/index.php/main/STARS
Johnston, K., Ver Hoef, J.M., Krivoruchko, K., and Lucas, N., 2001, Using ArcGIS Geostatistical Analyst. GIS by ESRI.
Jones, P.G., and Thornton, P.K., 1999, Fitting A Third-Order Markov Rainfall Model to Interpolated Climate Surfaces. Agricultural and Forest Meteorology 97 (1999) 213-231.
Li, X., Cheng, G.D., and Lu, L., 2000, Comparison of Spatial Interpolation Methods. Advances in Earth Sciences, 15(3): 260_265.
Lupikasza, E., 2006, Interpolation Methods for Precipitation Fields in Europe. Geophysical Research Abstracts, Vol. 8, 06493.
Moges, S.A., Alemaw, B.F., Chaoka, T.R., and Kachroo. R.K., 2007, Rainfall Interpolation Using A Remote Sensing CCD Data in A Tropical Basin - A GIS and Geostatistical Application.
Physics and Chemistry of the Earth, Parts A/B/C, Volume 32, Issues 15-18, Pages 976-983.
Robertson, G.P., 2008, GS+: Geostatistics for the Environmental Sciences. Gamma Design Software, Plainwell, Michigan USA.
Szentimrey, Z.T., Bihari and Szalai, S., 2005, Meteorological Interpolation Based on Surface Homogenized Data Basis (MISH). Geophysical Research Abstracts, Vol. 7, 07310, 2005.
Wen-yuan, C., Xin-gang, D., and Hong-wu, C., 2004, A Case Study of Geostatistical Interpolation in Meteorological Fields. Chinese Journal of Geophysics Vol.47, no.6, 2004, pp: 1104_1112.