Numerical and Experimental Studies of Wave Propagation Induced by Pile Driving

Authors

  • Endra Susila Assistant Professor and Head of Soil Mechanics Laboratory, Geotechnical Engineering Research Group Dept. of Civil Engineering, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Bandung, Indonesia.
  • Suhermanto Siahaan PT. Geostatika Utama, Bandung, Former Graduate Program of Geotechnical Engineering Dept. of Civil Engineering, Faculty of Civil and Environmental Engineering, Bandung Institue of Technology, Bandung, Indonesia.
  • Poltak Sinaga Project Manager of Conveyors, Coal Terminal, Bulk Material Handling and Infrastructures PT. Kaltim Prima Coal, Sangatta, East Kalimantan, Indonesia
  • Fico Agrensa Graduate Student of the Geotechnical Engineering Program, Dept. of Civil Engineering Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Bandung, Indonesia.

DOI:

https://doi.org/10.5614/jts.2014.21.2.1

Keywords:

Pile driving, Peak particle Velocity (PPV).

Abstract

Abstract. This paper presents results of numerical and experimental studies to predict the peak particle velocity (ppv) induced by a pile driving. By utilizing a professional finite element software, Plaxis 2D Dynamic, this study analyzed ppv due to pile driving in clays for various soil stiffness and various embedded pile lengths. For verification, a full scale field test of pile driving was performed in East Kalimantan with installed instrumentations of accelerations. Results of both instrumentation and numerical analysis show that ppv depends on distance and soil rigidity. The closer the object to pile tip, the larger the ppv that will be produced. The more rigid the soils at the pile tip, the larger the ppv, too. The results also show that both field test and numerical analysis results are comparable. Finally, this paper proposes a chart to predict the ppv of soils due to pile driving in clays. The output of the proposed method is the predicted ppv for various distances from pile driving location.

Abstrak. Paper ini menyampaikan hasil studi eksperimental dan numerik untuk memperkirakan besarnya kecepatan rambat gelombang (ppv) akibat pemancangan tiang pancang. Dengan bantuan software Plaxis ver. 8.2 Dynamic, studi ini menganalisis sejumlah model dengan berbagai variasi kekakuan pada tanah, khususnya tanah lempung (clay) dan berbagai kedalaman fondasi tiang tertanam. Hasil analisis software Plaxis ver. 8.2 Dynamic ini telah diverfikasi dengan hasil studi eksperimental pada sebuah proyek pemancangan fondasi tiang pancang di Kalimantan Timur. Berdasarkan analisis numerik dan data dari pengujian lapangan yang mempunyai hasil yang hampir sama, nilai ppv bergantung dari jarak dari pemancangan dan kekakuan tanah. Hasil dari penelitian ini adalah usulan formulasi prediksi besarnya kecepatan rambat gelombang (ppv) dalam bentuk chart untuk mempermudah menentukan nilai ppv yang akan terjadi akibat pemancangan di tanah lempung. Sedangkan keluarannya akan berupa besaran nilai ppv (peak particle velocity) terhadap jarak pemancangan tiang.

References

Asthanospoulos, G.A. and Pelekis, 2000, Ground Vibrations from Sheet Pile Driving in Urban Environment Measurement, Analysis and Effects on Building and Occupants, Soil Dynamics and Earthquake Engineering, Vol 19, No 5, pp371-387.

Attewell, P.B. and Farmer, I.W, 1973, Attenuation of Ground Vibration from Pile Driving, Ground Engineering, 6(4) 26-29.

Deutches Institut Fur Normung, 1992, DIN-4150 Vibration in Building. German National Standard.

Hardin, B.O. and Black, W.L., 1968, Vibration Modulus of Normally Consolidated Clay, American Society of Civil Engineering, Journal of Soil Mechanics and Foundations Div. ASCE.94(SM2), 353-369.

Heckman, W.S. and Hagerty, D.J, 1978, Vibration Associated with Pile Driving, American Society of Civil Engineering, Journal of the Construction Division, 104(CO4) 385-394.

Jones and Stokes, 2004, Transportation-and Construction-Induced Vibration Guidance Manual, Sacramento, CA, Prepared for California Department of Transportation, Noise, Vibration, and Hazardous Waste Management Office, Sacramento, CA.

Ko, J.M., Luk, S.T., and Cheng, C.Y., 1990, Vibration and Noise-Measurement Prediction and Control, Proceedings of Australian Vibration and Noise Conference 1990.

Madheswaran, C.K., Sundaravadivelu, R., Boominathan, A., and Natarajan, K, 2005, Response of Ground during Pile Driving, Journal of the Institution of Engineers (India), Civil Engineering, Vol. 86, pp. 22-27.

Miller, G.F. and Pursey, H., 1955, On The Partition of Energy between Elastic Waves in a Semi-infinite Solid, Proceedings of the Royal Society of London, Vol. 233, pp. 55-69.

Plaxis 2D - Version 8 Dynamic, : Manual Plaxis 8., edited R.B.J. Brinkgreve., Delft University of Technology & PLAXIS b.v.

Ramshaw C.L. and Shelby A.R, 2003, Computational Modelling of Ground Waves Due to Pile Driving, Numerical analysis and modeling in geomechanics, pp 133-136.

Richart, F.E., Hall, J.R., and Woods, R.D., 1970, Vibrations of Soils and Foundations, Pearson Education Inc, Upper Saddle River, New Jersey.

Swiss Assocation of Standardization, 1978, Effects of Vibration of Construction, SN 640312. Zurich, Switzerland.

Susila E., Surono A., Sudiraharjo L., Siahaan S, 2009, Engineering Analyses TBCT'S Rails Foundation PT KPC, pp3-01 - 3-05.

Wiss, J.F., 1981, Construction Vibrations. State of the Art, American Society of Civil Engineering, Journal of Geotechnical Engineering 107(GT2) 167-181.

Woods, R.D, 1968, Screening or Surface Waves in Soils, Proceeding of ASCE 94 Journal Soil Mechanics and Foundation Engineering Dir, SM4, pp. 951-979

Downloads

Published

2014-08-01

How to Cite

Susila, E., Siahaan, S., Sinaga, P., & Agrensa, F. (2014). Numerical and Experimental Studies of Wave Propagation Induced by Pile Driving. Jurnal Teknik Sipil, 21(2), 95-106. https://doi.org/10.5614/jts.2014.21.2.1

Issue

Section

Articles