Tekuk Torsi Lateral Balok I Kantilever Non Prismatis

Authors

  • Paulus Karta Wijaya Universitas Katolik Parahyangan - Jurusan Teknik Sipil Jalan Ciumbuleuit 94 Bandung.
  • Paulina Jacintha P.T. Recta Optima, Jl, Pratista Raya No 49, Antapani - Bandung.

DOI:

https://doi.org/10.5614/jts.2014.21.2.2

Keywords:

Tekuk torsi lateral, Balok kantilever, Momen kritis elastis, Metode elemen hingga.

Abstract

Abstrak. Dalam makalah ini disajikan hasil dari suatu studi tentang tekuk torsi lateral elastis balok kantilever dengan penampang I nonprismatis. Bentuk ketidak prismatisan adalah ketinggian badan (web) bervariasi linier sedangkan lebar sayap konstan. Untuk itu dilakukan analisis tekuk elastis sejumlah balok kantilever nonprismatis. Parameter yang ditinjau adalah parameter tak berdimensi balok untuk tekuk torsi lateral dan kemiringan sisi badan. Analisis dilakukan dengan menggunakan analisis tekuk linier metode elemen hingga yang dibantu program SAP versi 14. Formulasi metode elemen hingga berdasarkan teori bifurkasi. Teori ini menghasilkan suatu persamaan nilai Eigen. Momen kritis adalah nilai Eigen terkecil dari penyelesaian masalah nilai Eigen tersebut. Beban yang ditinjau adalah beban terpusat diujung bebas balok dan beban terbagi merata. Ditinjau juga pengaruh lokasi beban, yaitu beban bekerja pada pusat geser, beban bekerja pada sayap atas (sisi atas badan balok) dan beban bekerja pada sayap bawah (sisi bawah badan balok). Dari studi ini dapat disimpulkan bahwa kemiringan sisi badan berpengaruh kecil terhadap momen kritis balok bila beban bekerja pada pusat geser, akan tetapi pengaruh ketinggian letak beban terhadap pusat geser sangat dipengaruhi oleh kemiringan sisi badan. Selain itu telah didapat persamaan-persamaan untuk memperkirakan besarnya momen kritis elastis balok kantilever nonprismatis melalui analisis regresi terhadap data hasil metode elemen hingga.

Abstract. This paper presents the results of a study about elastic lateral torsional buckling of web tapered cantilever I beams. Elastic buckling analysis was carried out on a number of web tapered cantilever I beam. Beam parameters are expressed in term of dimensionless parameter for lateral torsional buckling and the slope of the side of the tapered web. The analysis is performed using finite element method and the SAP 2000 v 14 program is used to do the analysis. The finite element formulation is based on bifurcation theory. This theory leads to Eigen Value Problem. Critical moment is the lowest Eigen value. The load to be considered is point load at the free end of the beam and uniformly distributed load. Three location of load are considered. The first is at shear center, the second is at top flange and the third is at the bottom flange.From this study, it can be concluded that the slope of the side of tapered web has little influence on the critical moment. But the influence of load height on critical moment is strongly influenced by the slope of the side of the tapered web. Equations for estimating the critical moment has been obtained by regression of the data results of the finite element method.

References

American Institute of Steel Construction, 2010, Specification for Structural Steel Buildings, American Institute of Steel Construction, Illinois.

Andrade, A., Camotim, D., Costa, P.P., 2007, On The Evaluation of Elastic Critical Moment in Doubly and Singly Symetric I Section Cantilevers, Journal of Constructional Steel Research, 63, pp.894-908.

Cook, R.D., Malkus, D.S., Plesha, M.E., 2002, Concept and Application of Finite Element Analysis, John Wiley and Sons.

Denan, F, Osman, M.H., Saad, S., 2010, The Study of Lateral Torsional Buckling Behaviour of Beam With Trapezoid Web Steel Section by Experimental and Finite Element Analysis, International Journal of Research and Reviews in Applied Sciences 2(3).

Dowswel l,B., 2004, Lateral Torsional Buckling of Wide Flange Cantilever Beams, Engineering Journal, Third Quarter,2004.

Javidinejad, A., 2010, Buckling of Beams and Column Under Combined Axial and Horizontal Loading With Various Axial Loading Application Location, Journal of Theoretical and Applied Mechanics, vol 42 No 4 pp19-20.

Kabir, M.Z., Zeif, A.E. 2010, Lateral Torsional Buckling of Retrofitted Steel I Beams Using FRP Sheets, Transaction A: Civil Engeering Vol 17, No 4 pp 262-272, August 2010.

Kurniawan, C.W., Mahendran, M., 2011, Elastic Lateral Torsional Buckling of LiteSteel Beams under Transvese Loading, International Journals of Steel Structures, 11(4),pp 395-407.

Marques, L., 2012, Tapered Steel Members: Flexural dan Lateral Torsional Buckling, Disertations, Universidade de Coimbra.

Nathercod, D.A., 1973, The Effective Length of Cantilevers as Governed By Lateral Buckling, The Structural Engineer, Vol. 51.

Pinarbasi, S., 2011, Lateral Torsional Buckling of Rectangular Beams Using Variational Iteration Method, Scientific Research and Essays Vol 6 (6),pp. 1445-1457.

Raftoyiannis, I.G., Adamakos, T, 2010, Critical Lateral Torsional Buckling Moments of Steel Web Tapered I-Beams, 2010, The Open Construction and Building Technology Journal.4, pp105-112.

Showkati, H., 2008, Lateral Torsional Buckling of Castelated Beam, Iranian Journal of Science and Technology, Vol. 32, No B2, pp 153-156.

Rusul, H., 2013, Distorsional Lateral Torsional Buckling Analysis of Beams of Wide Flange Cross Sections, Thesis, Dept of Civil Engineering, Faculty of Engineering, University of Ottawa.

Trahair, N.S., 2010, Steel Cantilever Strength By Inelastic Lateral Buckling, Research Report R912, School of Civil Engineering, The University of Sydney.

Timoshenko, Gere, 1963, Theory of Elastic Stability, McGraw-Hill.

Trahair, N.S,.2010, Steel Cantilever Strength By Inelastic Lateral Buckling, Research Report, School of Civil Engineering, The University of Sidney.

Wilson, E.L., 2002, Three Dimensional Static and Dynamic Analysis of Structures, Computer and Structures. Inc., Berkeley, California,USA.

Younes, R.M., Farsakh, G.A., Hunaiti, Y.M. (2009), Effect of Welding on Lateral Torsional Buckling Resistance of I Shaped Built-up Steel, Jordan Journal of Civil Engineering, Vol 3 No 4.

Yuan,W.B., Kim, B.S., Chen, C.Y., 2013, Lateral Torsional Buckling of Steel Web Tapered Tee Section Cantilevers, Journal of Constructional Steel Research, Vol. 87,pp 31-37.

Ziemian, R., (2010), Guide To Stability Design Criteria for Metal Structures, John Wiley & Sons,Inc. pp226-227.

Downloads

Published

2014-08-01

How to Cite

Wijaya, P. K., & Jacintha, P. (2014). Tekuk Torsi Lateral Balok I Kantilever Non Prismatis. Jurnal Teknik Sipil, 21(2), 107-120. https://doi.org/10.5614/jts.2014.21.2.2

Issue

Section

Articles