Artificial Neural Network Model for Prediction of Bearing Capacity of Driven Pile

Authors

  • Harnedi Maizir Jurusan Teknik Sipil, Sekolah Tinggi Teknologi Pekanbaru, Jl. Dirgantara No. 4 Pekanbaru.
  • Nurly Gofar Fakultas Teknik, Universitas Sriwijaya, Bukit Besar Palembang 30139.
  • Khairul Anuar Kassim Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.

DOI:

https://doi.org/10.5614/jts.2015.22.1.6

Keywords:

Axial capacity, Shaft resistance, End bearing, PDA, ANN.

Abstract

Abstract. This paper presents the development of ANN model for prediction of axial capacity of a driven pile based on Pile Driving Analyzer (PDA) test data. As many as 300 sets of high quality test data from dynamic load test performed at several construction projects in Indonesia and Malaysia were selected for this study.Input considered in the modeling are pile characteristics (diameter, length as well as compression and tension capacity), pile set, and hammer characteristics (ram weight, drop height, and energy transferred).An ANN model (named: ANN-HM) was developed in this study using a computerized intelligent system for predicting the total pile capacity as well as shaft resistance and end bearing capacity for various pile and hammer characteristics. The results show that the ANN-HM serves as a reliable prediction tool to predict the resistance of the driven pile with coefficient of correlation (R) values close to 0.9 and mean squared error (MSE) less than 1% after 15,000 number of iteration process.

Abstrak. Makalah ini menyajikan pengembangan model ANN untuk prediksi kapasitas daya dukung axial tiang pancang berdasarkan data uji Pile Driving Analyzer (PDA). Sebanyak 300 set data uji dari uji beban dinamis yang dilakukan pada beberapa proyek konstruksi di Indonesia dan Malaysia dipilih untuk penelitian ini. Variabel bebas yang digunakan adalah karakteristik tiang pancang (diameter, panjang serta kapasitas tekan dan tarik), set, dan karakteristik palu penumbuk tiang (berat palu, tinggi jatuh dan energi yang ditransfer). Model ANN (yang dinamakan: ANN-HM) dikembangkan dalam penelitian ini menggunakan intelligent system dalam ANN untuk memprediksi daya dukung tiang total yang didistribusikan kepada tahanan ujung dan tahanan sisi untuk berbagai jenis tiang dan palu penumbuk tiang. Hasil penelitian menunjukkan bahwa ANN-HM dapat diandalkan untuk memprediksi daya dukung tiang pancang dengan koefisien korelasi (R) mendekati 0,9 dan rata-rata kesalahan kuadrat (MSE) kurang dari 1 % setelah 15.000 kali proses iterasi.

References

Abu Kiefa, M.A.,1998, General Regression Neural Networks for Driven Piles in Cohessionless Soils. Journal Geotechnicaland Geoenvironmental. Engineering, ASCE.124(12): 1177 - 1185.

ASTM-D4945-08, 2008, Standard Test Method for High-Strain Dynamic Testing of Piles, ASTM International, West Conshohocken, PA.

Berke, L. and Hajela, P., 1991, Application of Neural Nets in Structural Optimisation. NATO/AGARD Avanced Study Institute, Germany, 23 (I-II): 731-745.

Coduto, D.P., 2001, Foundation Design : Priciples and Practice. New Jersey: Prentice Hall Inc.

Gofar, N. and Angelo, M., 2006, Evaluation of Design Capacity of Bored Piles based on High Strain Dynamic Test. Jakarta: Proceedings PIT HATTI X.

Hecht-Nelson, R., 1987, Kolmogorov's Mapping Neural Network Existem Theorem. In Proc. of 1st IEEE Annual Int'l Conf. on Neural Networks. San Diego, NJ, USA.

Likins, G., 2004, Correlation of CAPWAP with Static Load Tests.Kuala Lumpur: Proc. 7th International Conference on the Application of Stress wave Theory to Piles.

Lee, I.M. and Lee, J.H.,1996,Prediction of Pile Bearing Capacity Using Artificial Neural Networks. Computers and Geotechnics, 18(3): 189-200.

Lok, T.M.H. and Che, W.F., 2004, Axial Capacity Prediction for Driven Piles Using ANN: Model Comparison., ASCE.

Nawari, N.O., Liang, R., and Nusairat, J., 2005, Artificial Intelligence Techniques for the Design and Analysis of Deep Foundations. Engineering Journal of Geotechnical Engineering.

Park, H.I. and Cho, C.W., 2010, Neural Network Model for Predicting the Resistance of Driven Pile. Marine Georesources and Geotechnology, 28: 324-344.

Priddy, K.L. and Keller, P.E.,2007, Artificial Neural Network, An Introduction. New Delhi: Prentice-Hall Robert, Y., 1994, A New Approach to the Analysis of High Strength Dynamic Pile Loat Test Data. Canadian Geotecnical Engineering Journal. 31(2) 246-253.

Shahin, M.A., 2010, Intelligent Computing for Modeling Axial Capacity of Pile Foundation. Canadian Geotech Engineering Journal.47: 230 - 243.

Teh, C.I., Wong, K., Goh, A and Jaritngam, S., 1997, Prediction of Pile Capacity Using Neural Networks. Computing in Civil Engineering, April:129-138.

Zhao, J., Jiewen, T., and Yongqiang, S., 2010, An ANN Model for Predicting Level Ultimate Bearing Capacity of PHC Pipe Pile. Earth and Space : Engineering, Science, Construction and Operations in Challenging Environments

Downloads

Published

2015-04-01

How to Cite

Maizir, H., Gofar, N., & Kassim, K. A. (2015). Artificial Neural Network Model for Prediction of Bearing Capacity of Driven Pile. Jurnal Teknik Sipil, 22(1), 49-56. https://doi.org/10.5614/jts.2015.22.1.6

Issue

Section

Articles