Program Eksperimental Perilaku Siklik Pilar Persegi Berongga Jembatan dengan Beton Berkekuatan Ultra Tinggi
DOI:
https://doi.org/10.5614/jts.2015.22.2.4Keywords:
HRSP-UHSC, Perilaku histeretik, Daktilitas perpindahan, Degradasi kekuatan, dan Disipasi energiAbstract
Abstrak. Makalah ini membahas perilaku histeretik pilar beton bertulang berpenampang bujursangkar berongga (Hollow Rectangular Section Pier, HRSP) dengan mengaplikasikan material beton berkekuatan ultra tinggi (Ultra High Strength Concrete, UHSC). Program eksperimental dilaksanakan pada dua model spesimen HRSP-UHSC yang dibebani kombinasi gaya aksial tekan yang konstan dan perpindahan lateral siklik quasi static melalui aktuator pada loading frame. Pembebanan lateral berbasis pada control perpindahan sesuai ACI-374.1-05 (2005). Gaya aksial tekan diaplikasikan pada HRSP-70 dan HRSP-60 dengan rasio masing-masing sebesar 0.075fc'Ag. dan 0.15fc'Ag. Hasil ekeperimental menunjukkan bahwa peningkatan rasio gaya aksial tekan berpengaruh signifikan terhadap peningkatan kekuatan geser pilar, namun selanjutnya pilar mengalami degradasi kekuatan lebih cepat dengan pencapaian drift ratio dan faktor daktilitas perpindahan yang menurun. HRSP-70 mampu mencapai drift ratio 5.80% dengan faktor daktilitas perpindahan 5.35, sedangkan faktor daktilitas perpindahan HRSP-60 menurun menjadi 4.58 pada drift ratio 3.50%. Kecenderungan ini mengakibatkan HRSP-70 mampu mengakomodir degradasi kekakuan dari keadaan leleh pertama sampai pada kondisi batas hingga 82.99%, sedangkan pada HRSP-60 hanya sekitar 77.86%. Begitu pula pendisipasian energi pada HRSP-60 menurun 39.46% setelah gaya aksial tekan dinaikkan sebesar 50%.Abstract. This paper discusses the hysteretic behavior of Hollow Rectangular Section Piers (HRSP) by applying Ultra High Strength Concrete (UHSC) material. The experimental program conducted in two models of HRSP-UHSC specimens were loaded by combination of a constant axial compression force and quasi static lateral cyclic loads through actuators on the loading frame. The lateral loads were based on displacement controls in ACI 374.1-05 (2005). The constant axial compression forces were applied into the HRSP-70 and HRSP-60 of 0.075fc'Ag and 0.15fc'Ag, respectively. The experimental results indicate that the increasing of the axial compression force ratio enhances the shear strength significantly, but then it experiences higher strength degradations with lower attainment
of drift ratio and displacement ductility factor. The HRSP-70 achieved a displacement ductility factor of 5.35 at drift ratio of 5.80%, while HRSP-60 achieved a displacement ductility factor of 4.58 at drift ratio of 3.50%. This trend resulted that HRSP-70 was able to accommodate the stiffness degradation of the first yield state to the ultimate conditions up to 82.99%, while the HRSP-60 was only about 77.86%. Similarly, the energy dissipation of HRSP-60 decreased by 39.46% after the constant axial compression force had been increased 50% from previous specimen.
References
AASHTO-LRFD Bridge Design Specifications, 2010, Published by American Association of State Highway and Transportation Officials (AASHTO), Fifth Edition, ISBN: 978-1-56051-451-0, Pub Code: LRFDUS-5, Washington DC 20001.
AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2011, Published by American Association of State Highway and Transportation Officials (AASHTO), Second Edition, ISBN: 978-1-56051-521-0, Pub Code:LRFDSEIS-2, Washington DC 20001.
ACI 343.R - 95, 1995, Analysis and Design of Reinforced Concrete Bridge Structures, Reported by ACI-ASCE Committee 343, March, 1.
ACI 374.1 - 05, 2005, Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, Reported by American Concrete Institute (ACI) Committee 374 adopted ACI T1.1/T1.1R-01 as ACI 374.1-05 on October, 12.
ASTM C494/C494M - 04, 2004, Standard Specification for Chemical Admixtures for Concrete, United States: American Society of Testing Materials (ASTM) International, Published February.
ASTM C469 - 94, 1994, Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, United States: American Society of Testing Materials (ASTM) International, Published July.
ASTM C78 - 02, 2002, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), United States: American Society of Testing Materials (ASTM) International, Published July.
Budiono, B., Kurniawan, R., dan Rahman, M.J., 2011, Perilaku Elemen Struktur Beton Bertulang Beton Bubuk Reaktif (Reactive Powder Concrete) dengan Beban Lateral Statik Monotonik, Proceeding 1st Indonesian Structural Engineering and Material Symposium (1st ISEMS), Department of Civil Engineering - Parahyangan Catholic University, Bandung, 17-18 November, ISBN: 978-979-97606-5-4, Page
-15.
CALTRANS, 2003, Bridge Design Specifications, California Transportation (CALTRANS), September.
Calvi, G.M., Pavese, A., Rasulo, A., and Bolognini, D., 2005, Experimental and Numerical Studies, on the Seismic Response of R.C Hollow Bridge Piers, Springer, Bulletin of Earthquake Engineering,
: 367-297.
Delgado, R., Delgado, P., Pouca, N.V., Arede, A., Rocha, P., and Costa, A., 2009, Shear Effect on Hollow Section Piers under Seismic Action: Experimental and Numerical Analysis, Springer
Science, Bull Earthquake Eng. 7:377-389.
FEMA (Federal Emergency Management Agency) P-750, 2009, NEHRP (National Earthquake Hazards Reduction Program) FEMA of the U.S. Department of Homeland Security, By the Building Seismic Safety Council of the National Institute of Building Sciences, 2009 Edition.
Graybeal, A.B., 2007, Compressive Behavior of Ultra-High-Performance Fibre-Reinforced Concrete, ACI Materials Journal, Vol. 104, No. 2, Page 146 - 152, March-April.
Koehler, E.P., and Fowler, D.W., 2007, Inspection Manual for Self-Consolidating Concrete in Precast Members, Product 0-5134-P1, TxDOT Project 0-5134: Self-Consolidating Concrete for Precast Structural Applications, Center for Transportation Research The University of Texas at Austin, August.
Maria, H.S., Wood, S.L., Breen. J.E., 2006, Behavior of Hollow Rectangular Reinforced Piers Subjected to Biaxial Loading, ACI Materials Journal, Title no. 103-S41, Vol. 103, No. 3, Page 390-398,
May-June.
Menegotto, M., and Pinto, P.E., 1973 "Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending," Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridgeand Structural Engineering, (ABSE) Lisbon, Portugal , pp. 15-22.
Priestley, M.J.N., Seible, F., and Calvi, G.M., 1996, Seismic Design and Retrofit of Bridge, New York: John Wiley and Sons, Inc.
Richard, P., and Cheyrezy, M., 1994, Reactive Powder Concretes With High Ductility and 200 - 800 Mpa Compressive Strength, ACI Materials Journal , Vol. 144, page 507-518.
Sheikh, M.N., Vivier, A., and Legeron, F., 2007, Seismic Vulnerability of Hollow core Concrete Bridge Piers, Proceeding of the 5th International Conference on Concrete under Severe Condition
of Environment and Loading (CONSEC07), France, 2007, 1445-1454.