Kajian Koefisien Koreksi Indeks Kekeringan Menggunakan Basis Data Satelit TRMM dan Hujan Lapangan
DOI:
https://doi.org/10.5614/jts.2015.22.2.7Keywords:
Kekeringan, Koreksi indeks kekeringan, SPI, TRMM.Abstract
Abstrak. Untuk menganalisa kekeringan membutuhkan data curah hujan yang panjang yaitu > 30 tahun. Akan tetapi sangat sulit mendapatkan cukup data curah hujan, khususnya untuk daerah di luar Pulau Jawa yang memiliki keterbatasan data. Guna mengatasi problem tersebut, data hujan dari satelit Tropical Rainfall Measuring Mission (TRMM) dikaji kemungkinannya untuk menggantikan data hujan lapangan periode panjang. Studi kasus dilakukan dengan data di wilayah sungai Pemali Comal. Maksud dari kajian ini untuk mendapatkan koefisien koreksi indeks kekeringan data hujan dari satelit TRMM agar data TRMM tersebut dapat menjadi alternatif untuk menganalisa indeks kekeringan pada wilayah dengan keterbatasan data. Metode untuk menganalisa indeks kekeringan menggunakan Standardized Precipitation Index (SPI) dan indikator dalam menentukan koreksi dengan Root MeanSquare Error (RMSE), dengan ambang batas kesalahan 0.5. RMSE dibandingkan antara RMSE SPI data hujanlapangan panjang (1951-2013) dan data satelit TRMM (2002-2013). Hasil rata-rata RMSE SPI koreksi < 0,5 untuk SPI semua skala waktu, sedangkan rata-rata RMSE tanpa koreksi, koreksi α-β wilayah dan pembagian wilayah berada > 0,5. Dengan demikian, data TRMM dengan koreksi SPI dapat digunakan dalam analisa kekeringan SPI semua skala waktu.
Abstract. Analyzing drought requires a long period of rainfall data more than 30 years. Obtaining enough rainfall data, however, it is very difficult especially for areas outside of Java that have limited data. To solve this problem, the possibility of using Tropical Rainfall Measuring Mission (TRMM) satellite rainfall data to substitute long-period of rainfall data is examined. For a case study, data from Pemali Comal river basin is used. This study is aimed to obtain the value of drought correction coefficient index based on the TRMM data, so that the data can be used as an alternative to analyze drought index / severity of drought in areas with limited rainfall data. Standardized Precipitation Index (SPI) method is used to analyze drought severity, and the correction factor is determined by Root Mean Square Error (RMSE) with 0.5 as a threshold. Then the RMSE is compared between RMSE SPI of long period of groundstation rainfall data (1951-2013) and the TRMM satellite data (2002-2013). The results is that the average RMSE SPI correction is <0.5 for all SPI time scales, while the average RMSE without correction, correction α-β (whole region and sub-region) were > 0.5. Thus, the TRMM data with SPI correction can be used in the analysis of the SPI drought at all the time scale.
References
Adidarma.,Wanny, K., 2006, Pengembangan Model Pemantauan Gejala Kekeringan di Indonesia Studi Kasus Masalah Kekeringan di Sws Pemali Comal, Jawa Tengah, Disertasi S3, Universitas Katolik Parahyangan, Bandung.
Edwards, D.C.,M cKee, T.B., 1997, Characteristic of 20th Century Drought In The United States at Multiple Time Scales, Climatology Report No.97-2, Department of Athmospheric Science Colorado State University. (http://ccc.atmos.colostate.edu/ edwards.pdf, diunduh pada Januari 2014)
Hayes, M.J., 1999, Drought Indices, National Drought Mitigation Centre. (http:// www.wrcc.dri.edu/spi/explanation.htm diunduh Desember 2013).
Levina, 2014, Kajian Koefisien Koreksi Indeks Kekeringan Berdasarkan Data Hujan Lapangan dan TRMM : Studi Kasus Ws Pemali Comal, Jawa Tengah. Tesis, Institut Teknologi Bandung.
Mc.Kee, T.B., Doesken, N.J., Kleist, J., 1993, The Relationship of Drought Frequency and Duration to Time Scales, Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California, USA.
NASDA (National Space Development Agency of Japan), 2001, TRMM Data Users Handbook, February.
Pusat Litbang Sumber Daya Air, 2010, Laporan Akhir: Mengatasi Kekeringan Akibat Perubahan Iklim dengan Pendekatan Mitigasi, Bandung.
Pusat Litbang Sumber Daya Air, 2011, Laporan Akhir: Penelitian Prakiraan dan Pengendalian Kekeringan, Bandung.
Spinoni J, et.al., 2013, An Overview of Drought Events in The Carpathian Region in 1961-2010, Adv. Sci. Res., 10, 21-32, 2013.(www.adv-sci-res.net> asr-10-21-2013)
Suryantoro, Arief, et.al., 2008, Aplikasi Satelit TRMM (Tropical Rainfall Measuring Mission) untuk Prediksi Curah Hujan Wilayah Indonesia, Pusat Pemanfaatan Sains Atmosfer dan Iklim-LAPAN.
Thom, H. C. S, 1966, Some Methods of Climatological Analysis, WMO Technical note no.81, World Meteorological Organization Publication no.199, 53 pp. (http://www.wmo.int/pages/prog/wcp/agm/publications/technical_notes.php)
Vernimmen RRE, et.al., 2012, Evaluation and Bias Correction of Satellite Rainfall Data for Drought Monitoring in Indonesia, Hydrol. Earth Syst. Sci., 16, 133-146, doi: 10.5194/hess-16-133-2012.
(http://www.hydrol-earth-systsci.net/16/ 133/2012/hess-16-133-2012.pdf )
World Meteorological Organization (WMO), 2012, Standardized Precipitation Index User Guide No. 1090, Geneva - Switzerland.