Pengaruh Ketidakberaturan Bentuk Bangunan Beton Bertulang Bertingkat Tinggi Terhadap Perilaku Seismik

https://doi.org/10.5614/jts.2023.30.2.17

Authors

  • Hakas Prayuda Universitas Muhammadiyah Yogyakarta
  • Taufiq Ilham Maulana Universitas Muhammadiyah Yogyakarta
  • Firhan Mahreza Yunanto Putra Universitas Muhammadiyah Yogyakarta
  • Bella Salsabila Universitas Muhammadiyah Yogyakarta
  • Fadillawaty Saleh Universitas Muhammadiyah Yogyakarta

Abstract

Abstrak

Penelitian ini bertujuan untuk menginvestigasi perilaku bangunan beton bertulang bertingkat tinggi yang memiliki ketidakberaturan bentuk arah vertikal dan horizontal terhadap beban seismik. Ketidakberaturan bentuk bangunan gedung bertingkat tinggi memiliki pengaruh dalam menahan beban gempa. Keterbatasan lahan serta pertimbangan efek eastetik menyebabkan seringkali bangunan bertingkat tinggi didesain tanpa mempertimbangkan ketidakberaturan bentuk. Penelitian ini menggunakan bangunan gedung 12 lantai yang didesain dengan dua tipe ketidakberaturan horizontal yaitu berbentuk T dan U. Masing-masing ketidakberaturan horizontal memiliki 5 variasi ketidakberaturan vertikal, sehingga total variasi pada penelitian ini terdiri dari 10 model. Struktur frame di analisis menggunakan software STERA 3D untuk analisis  non-linier dinamik riwayat waktu. Tiga data gempa digunakan sebagai variasi beban seismik untuk masing-masing model yaitu data riwayat waktu gempa El-Centro, Kobe dan Parkfield. Perilaku seismik bangunan gedung yang diinvestigasi pada penelitian ini terdiri dari gaya geser, deformasi lateral, kekakuan bangunan, hubungan gaya geser dasar dengan deformasi, drift ratio dan percepatan maksimum. Hasil analisis numerik menunjukkan bahwa setiap model memiliki perilaku yang berbeda-beda ketika diberikan beban sesimik dan input kualitas material yang sama. Sehingga dapat disimpulkan bahwa ketidakberaturan bangunan arah horizontal dan vertikal sangat mempengaruhi perilaku sesimik bada bangunan gedung beton bertulang bertingkat tinggi

Abstract

The purpose of this study is to investigate the seismic behavior of high-rise reinforced concrete buildings with irregular shapes in the vertical and horizontal directions. The irregular shape of high-rise buildings has an effect on their ability to withstand earthquake loads. Due to limited area and aesthetic concerns, high-rise buildings are frequently designed without regard for irregular shapes. This study employs a 12-story structure with two different types of horizontal irregularities, namely T and U-shaped. Each horizontal irregularity has five vertical irregularity variations, for a total of ten models in this study.  The frame structure was analyzed using the non-linear dynamics time history analysis software STERA 3D. Three earthquake data sets were used to generate seismic load variations for each model: the El-Centro, Kobe, and Parkfield earthquakes. The seismic behavior of the building investigated in this study included shear force, lateral deformation, stiffness of the structure, the relationship between base shear force and deformation, drift ratio, and maximum acceleration. The numerical analysis results indicate that each model behaves differently when subjected to the same seismic load and input material quality. Thus, the irregularity of the horizontal and vertical directions has a significant effect on the seismic behavior of high-rise reinforced concrete buildings.

 

 

References

Daftar Pustaka

Afifuddin, M., Panjaitan, M. A. R., Ayuna, D., 2017, The Behaviour of Reinforced Concrete Structure due to Earthquake Load using Time History Analysis Method, IOP Conference Series: Earth Environmental Science, Vol. 56, No. 1, pp. 1-9.

Akberuddin, M. A. M., Saleemuddin, M. Z. M., 2013, Pushover Analysis of Medium Rise Multy-Story Frame with and Wihtout Vertical Irregularity, International Journal of Engineering Research and Applications, Vol. 3, No. 4, pp. 540-546.

Alecci, V., Stefano, M. D., Galassi, S., Lapi, M., Orlando, M., 2019, Evaluation of the American Approach for Detecting Plan Irregularity, Advances in Civil Engineering, Vol. 2019, pp. 1-10.

American Standard for Civil Engineers (ASCE), 2010, ASCE/SEI 7-10: Minimum Design Loads for Buildings and Other Structures. American Standard for Civil Engineers. The United States.

Azghandi, R. R., Shakib, H., Zakersalehi, M., 2020, Numerical Simulation of Seismic Collapse Mechanisms of Vertically Irregular Steel High-Rise Buildings, Journal of Constructional Steel Research, Vol. 166, pp. 1-16.

Badan Standar Nasional (BSN), 2013, SNI 1727: 2013: Beban Minimum untuk Peranjangan Bangunan Gedung dan Struktur Lain, Standar Nasional Indonesia, Jakarta, Indonesia

Badan Standar Nasional (BSN), 2017, SNI 2052-2017 Baja Tulangan Beton, Standar Nasional Indonesia, Jakarta, Indonesia.

Badan Standar Nasional (BSN), 2019a, SNI 1726:2019 Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Nongedung, Standar Nasional Indonesia, Jakarta, Indonesia.

Badan Standar Nasional (BSN), 2019b, SNI 2847-2019 Persyaratan Beton Struktural Untuk Bangunan, Standar Nasional Indonesia. Jakarta, Indonesia.

Cao, M., Motosaka, M., Tsamba, T., Yoshida, K., 2013, Simulation Analysis of Damaged 9-Story SRC Building During the 2011 Great East Japan Earthquake, Journal of Japan Association for Earthquake Engineering, Vol. 13, No. 2, pp. 45-64.

Committee European de Normalisation (CEN), 2004, EN 1998–1, Eurocode 8: Design of Structures for Earthquake Resistance Part 1: General Rules, Seismic Actions, and Rules for Buildings, European Committee of Standardization, Brussels.

Federal Emergency Management Agency (FEMA), 2015, FEMA 154: Rapid Visual Screening of Buildings for Potential Seismic Hazards a Handbook. Applied Technology Council. The United States.

Haque, M., Ray, M., Chakrabotry, A., Elias, M., Alam, I., 2016, Seismic Performance Analysis of RCC Multi-Storied Buildings with Plan Irregularity, American Journal of Civil Engineering, Vol. 4, p, No. 2, pp. 52-57.

Idris, Y., Cummins, P., Rusydy, I., Mukhsin, U., Syamsidik, Habibie, M. Y., Meilianda, E., 2022, Post-Earthquake Damage Assessment After the 6.5 mw Earthquake on December 7th, 2016, in Pidie Jaya, Indonesia, Journal of Eartquake Engineering, Vol. 26, No. 1, pp. 409-426.

Kashkooli, N, A., Banan, M. R., 2013, Effect of Frame Irregularity on Accuracy of Modal Equivalent Nonlinear Static Seismic Analysis, KSCE Journal of Civil Engineering, Vol. 17, No. 5, pp. 1064-1072.

Maidiawati, Sanada, Y., 2008, Investigation and Analysis of Buildings Damaged During the September 2007 Sumatra, Indonesia Earthquakes, Journal of Asian Architecture and Building Engineering, Vol. 7, No. 2, pp. 371-378.

Masrilayanti, Rahmadona, Kurniawan, R., 2021, Seismic vulnerability assessment of three spans girder bridge in Kuranji - Padang by developing fragility curve, IOP Conference Series: Earth Environemntal and Science, Vol. 708, No. 1, pp. 1-8.

Mathew, M., George, S. C., Varghese, G. M., 2016, Seismic Evaluation of Building with Plan Irregularity, Applied Mechanic and Materials, Vol. 857, pp. 225-230.

Michalis, F., Dimitrios, V., Manolis, P., 2006, Evaluation of the Influence of Vertical Irregularities on the Seismic Performance of Nine-Storey Steel Frame, Earthquake Engineering and Structural Dynamics, Vol. 35, pp. 1489-1509.

Maulana, T. I., Enkhtengis, B., Saito, T., 2021, Proposal of damage index ratio for low-to mid-rise reinforced concrete moment-resisting frame with setback subjected to uniaxial seismic loading, Applied Science, Vol. 11, No. 15, pp. 1-16.

Maulana, T. I., Faturrochman, J. N., Saito, T., 2019, Preliminary Seismic Performance-based Evaluation of Academic Reinforced Concrete Building in Yogyakarta based on Displacement Parameter, Advances in Engineering Research, Vol. 187, pp. 72-77.

Monika, F., Zega, B. C., Prayuda, H., Cahyati, M. D., Putra, Y. A., 2020, The Effect of Horizontal Vulnerability on the Stiffness Level of Reinforced Concrete Structure on High-Rise Buildings, Journal of Civil Engineering Forum, Vol. 6, No. 1, pp. 49-60.

Mwafy, A., & Khalifa, S., 2017, Effect of Vertical Structural Irregularity on Seismic Design of Tall Buildings, The Structural Design of Tall and Special Buildings, Vol. 26, No. 18, pp. 1-22.

Nabeel, Y., 2016, Seismic Analysis of RC Frame with and Without Shear Walls, International Journal

of Civil and Structural Engineering, Vol. 6. No. 3, pp. 168-176.

Naqi, A., Saito, T., 2017, A Proposal for Seismic Evaluation Index of Mid-rRse Existing RC Buildings in Afghanistan, AIP Conference Proceedings, Vol. 1892, pp. 1-8.

National Building Code of Canada (NBCC), 2010, Institute for Research in Construction, National Research Council of Canada, Canada.

Olteanu, P., Coliba, V., Vacareanu, R., Pavel, F., Ciuiu, D., 2016, Analytical Seismic Fragility Functions for dual RC Structures in Buchaarest. The 1940 Vrancea Earthquake, Issues, Insights and Lesson Learnt, pp. 463-479.

Pavel, F., Calotescu, I., Stanescu, D., Badju, A., 2018, Life-Cycle and Seismic Fragility Assessment of Code-Conforming Reinforced Concrete and Steel Structures in Bucharest, Romania, International Journal of Disaster and Risk Science, Vol. 9, No. 2, pp. 263-274.

Pirizadeh, M., Shakib, H., 2013, Probabilistic Seismic Performance Evaluation of Non-Geometric Vertically Irregular Steel Buildings, Journal of Constructional Steel Research, Vol. 82, pp. 88-98.

Prayuda, H., Zega, B. C., Priyosulistyo, H., 2017, Prediction of Allowable Lateral Ground Acceleration (in-Plane Direction) of Confined Masonry Walls Using Ambient Vibration (microtremor) Analysis, Procedia Engineering, Vol. 171, pp. 1194-1203.

Pujianto, A., Prayuda, H., Rosyidi, S. A. P., Monika, F., Faizah, R., 2019, Rapid Visual Screening (RVS) for School Buildings after Earthquake in Lombok, West Nusa Tenggara, Indonesia, IOP Conference Series: Materials and Science Engineering, Vol. 650, No. 1, pp. 1-10.

Raheem, S. E. A., Ahmed. M. M. M., Abdel-shafy, A. G. A., 2018, Evaluation of Plan Configuration Irregularity Effects on Seismic Response Demand of L-Shaped MRF Buildings, Bulletin of Earthquake Engineering, Vol. 16, pp. 3845-3869.

Rahman, S. A. A. A., Salik, A. U., 2018, Seismic Response of Vertically Irregular RC Frame with Mass Irregularity, International Journal of Recent Scientific Research, Vol. 9, No. 2, pp. 24317-24321.

Rahman, S. S., Shimpale, P. M., 2021, Analysis of Effect of Structural Irregularity in Multistorey Building under Seismic Loading, International Journal of Scientific Development and Research, Vol. 6, No. 2, pp. 275-282.

Rana, D., Raheem, J., 2015, Seismic Analysis of Regular and Vertical Geometric Irregular RCC Framed Building, International Research Journal of Engineering and Technology, Vol. 2, No. 4, pp. 1396-1402.

Safarizki, H. A., Kristiwan, S. A., Basuki, A., 2013, Evaluation of the use of steel bracing to improve seismic performance of reinforced concrete building, Procedia Engineering, Vol. 54, pp 447-456.

Saito, T., 2016, Response of High-Rise Buildings under Long Period Earthquake Ground Motions, International Journal of Structural and Civil Engineering Research, Vol. 5, No. 4, pp. 308-314.

Saito, T., 2017, Structural Earthquake Response Analysis 3D, Technical Manual Version 5.8, Toyohashi University of Technology.

Saputra, A., Rahardianto, T., Revindo, M. D., Delikostidis, I., Hadmoko, D. S., Sartohadi, J., Gomez, C., 2017, Seismic Vulnerability Assessment of Residential Buildings using Logistic Regression and Geographic Information System (GIS) in Pleret Subdistrict (Yogyakarta, Indonesia), Geoenvironmental Disasters, Vol. 4, No. 11, pp. 1-33.

Sayyed, O., Kushwah, S. S., Rawat, A., 2017, Effect of Infill and Mass Irregularity on RC Building under Seismic Loading, International Research Journal of Engineering and Technology, Vol. 4, No. 2, pp. 176-181.

Setiawan, S., Nakazawa, S., 2017, Study on comparison of special moment frame steel structure (SMF) and base isolation special moment frame steel structure (BI-SMF) in Indonesia, AIP Conference Proceedings, Vol. 1892, pp. 1-8.

Shelke, R. N., Ansari, U. S., 2017, Seismic Analysis of Vertical Irregular RC Building Frames, International Journal of Civil Engineering and Technology, Vol. 8, No. 1, pp. 155-169.

Stefano, M. D., Tanganelli, M., Viti, S., 2014, Variability in Concrete Mechanical Properties as a Source of In-Plan Irregularity for Existing RC Framed Structures, Engineering Structures, Vol. 59, pp. 161-172.

Tanjung, J., Maidiawati, Nugroho, F., 2019, Seismic Performance Evaluation of a Multistory RC Building in Padang City, MATEC Web Conference, Vol. 258, pp. 03018.

Tremblay, R., Poncet, L., 2005, Sesimic Performance of Concentrically Braced Steel Frames in Multistory Buildings with Mass Irregularity, Journal of Structural Engineering, Vol. 131, No. 9, pp. 1363-1375.

Trung, K. L., Lee, K., Lee, J., Lee, D. H., 2012, Evaluation of Seismic Behaviour of Steel Spacial Moment Frame Buildings with Vertical Irregularities, The Structural Design of Tall and Special Buildings, Vol. 21, pp. 215-232.

Varadharajan, S., Sehgal, V. K., Saini, B., 2014, Seismic Response of Multistory Reinforced Concrete Frame with Vertical Mass and Stiffness Irregularities, The Structural Design of Tall and Special Buildings, Vol. 23, pp. 362-389.

Wang, J., Dai, K., Yin, Y., Tesfamariam, S., 2018, Seismic Performance-Based Design and Risk Analysis of Thermal Power Plant Building with Consideration of Vertical and Mass Irregularities, Engineering Structures, Vol. 164, pp. 141-154.

Wijaya, U., Soegiarsa, R., Tavio, 2019, Sesimic Performance Evaluation of a Base Isolated Building, International Journal of Civil Engineering and Technology, Vol. 10, No. 1, pp. 288-296.

Published

2023-08-26