Kinerja Struktur Rangka Beton Bertulang dengan Penambahan Dinding Pengisi Berlubang sebagai Perkuatan Seismik
DOI:
https://doi.org/10.5614/jts.2017.24.1.6Keywords:
Analisis kinerja, dinding pengisi berlubang, elemen shell, perkuatan seismik, strut diagonal.Abstract
Abstrak
Penelitian ini dilakukan guna memperoleh model struktur rangka beton bertulang dengan dinding pengisi (RDP)berlubang, dengan dan tanpa perkuatan di sekitar lubang (lintel), sebagai perkuatan seismik, denganmembandingkan perilaku dan kinerja struktur RDP dengan berbagai rasio lubang. Pada tahap awal dilakukanvalidasi model dengan membandingkan perilaku struktur yang dimodel menggunakan elemen shell (RDPsh) danstrut diagonal (RDPst) dengan hasil uji laboratorium yang telah dilakukan oleh peneliti lain. Model validasimenunjukkan bahwa RDPsh menghasilkan diagram beban simpangan lateral yang lebih mendekati hasil tesdibandingkan dengan RDPst. Disamping itu, persamaan lebar strut untuk dinding berlubang tanpa lintel tidak bisadigunakan untuk dinding berlubang dengan lintel karena lintel menambah kekakuan rangka, memperkuat dindingdi sekitar lubang dan mengurangi tegangan maksimum pada sudut lubang sampai 40%. Lebar strut diagonalkemudian dimodifikasi untuk mendapatkan model yang menghasilkan respon sesuai dengan RDPsh. Kemudianmodel rangka beton bertulang 3, 4, dan 5 lantai dengan dinding pengisi berlubang sentris dengan lintel disekeliling lubang dibuat dengan variasi rasio lubang 0 "? 100%. Hasil analisis pada RDP 3 lantai menunjukkanbahwa, terjadi pengurangan simpangan lateral masing-masing sebesar 65%, 58%, 43%, 22%, dan 5% untuk rasiolubang 0%, 20%, 40%, 60%, dan 80%. Persentase pengurangan yang hampir sama juga terjadi pada rangka 4 dan5 lantai. Untuk rangka 3-lantai, penambahan dinding pengisi dengan rasio lubang terbesar 60% cukup memadaiuntuk menahan beban gempa yang disyaratkan SNI 1726:2012. Tetapi, untuk rangka 4 dan 5 lantai, diperlukandinding dengan rasio lubang maksimum 40%. Penambahan dinding pengisi meningkatkan kemampuan strukturdalam menahan gaya geser dasar akibat gempa. Namun demikian, peningkatan kekuatan ini disertai denganpenurunan daktilitas struktur seiring dengan menurunnya rasio lubang.
Abstract
This research was conducted to develop a model of seismic retrofitting of reinforced concrete frame using infill wallwith central openings, with and without lintels around the opening, by comparing the behaviour and performance ofthe frame structures with varying opening ratios. Prior to model the strengthened frames, validation was done bycomparing the behaviour of computer models using shell element (RDPsh) and diagonal strut (RDPst) to those oflaboratory tests conducted by others. The validation models show that the lateral load-displacement diagrams ofRDPsh fit the test result better than the strut ones. It was also found that the strut width equation for openingwithout lintel can not be used for opening with lintels as the lintels stiffen the frame and strengthen the wall aroundthe openings. Based on these results, the width of strut was modified to match the response of model using shellelement with lintels around the opening. The RC frames of 3, 4, and 5 storey retrofitted using infill wall with centralopening ratio varies from 0 to 100%, was then conducted by modeling the infill wall as an equivalent diagonal strutand shell elements in SAP2000 software. The analysis results of 3-storey frames show that, reduction on lateraldrifts of 65%, 58%, 43%, 22%, and 5% was observed for opening ratio of 0%, 20%, 40%, 60%, dan 80%,respectively. Similar results were also found for the 4 and 5 storey frames. From the reinforcement requirements itcan be concluded that the strengthening method can be applied with limitation on the wall opening ratios. For 3-storey frames, the addition of infill wall with opening ratio up to 60% is adequate to withstand the quake loadspecified in the SNI 1726:2012. For 4 and 5-storey frames however, opening ratio of 40% or less is required.Interestingly, the addition of infill wall with lintels can withstand higher base shear forces. However, the increasedstrength is followed by a decreased ductility in line with decreasing opening ratio.
References
Asteris, P.G., Giannopoulos, I.P., and Chrysostomou, C.Z. 2012. Modeling of Infilled Frames with Openings. The Open Construction and Building Technology Journal 2012, pp. 81-91
Badan Standardisasi Nasional, 2012, Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung-SNI 1726:2012. Jakarta : BSN.
Badan Standardisasi Nasional, 2013, Persyaratan Beton Struktural untuk Bangunan Gedung-SNI 2847:2013 Departemen Permukiman dan Prasarana Wilayah, 2002, Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung-SNI 1726:2002
Dorji, J., and Thambiratnam, D.P., 2009, Modelling and Analysis of Infilled Frame Structures under Seismic Loads. The Open Construction and Building Technology Journal, 2009, 3, 119-126
Federal Emergency Management Agency, 2000, FEMA 356 - Prestandard and Commentary for theSeismic Rehabilitation of Buildings. Washington DC.: FEMA.
Kakaletsis, D.J., and Karayannis, C.G., 2009, Experimental Investigation of Infilled Reinforced Concrete Frames with Openings. ACI Structural Journal. Title no. 106-S14.
Mondal, G., and Jain, S.K., 2008, Lateral Stiffness of Masonry Infilled Reinforced Concrete (RC) Frames with Central Opening. Earthquake Spectra, Volume 24, No. 3, pages 701-723, August 2008; Earthquake Engineering Research Institute.
Sugano, S., 1981, Seismic Strengthening of Existing RC Buildings in Japan. Bull. New Zealand National Society for Earthquake Engineering, Vol. 14, No. 4., pp.209-222
Sugano, S., 1992, Research and Design for Seismic Retrofit of Existing Building in Japan. Proc. of International Symposium on Earthquake Disaster Prevention, Mexico City, May, pp.91-106
Sukrawa, M., 2015, Earthquake Response of RC Infilled Frame with Wall Openings in Low-Rise Hotel Buildings. Procedia Engineering 125, pp. 933-939
Hotel Buildings. Procedia Engineering 125, pp.
-939