Development of Non-Intrusive Load Monitoring of Electricity Load Classification with Low-Frequency Sampling Based on Support Vector Machine
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2023.55.2.1Keywords:
Non-Intrusive Load Monitoring, Support Vector Machine, Low Frequency Sampling, Energy Monitoring, Load ClassificationAbstract
Non-intrusive load monitoring (NILM) is a promising approach to provide energy consumption monitoring of electrical appliances and analysis of current and voltage data with less instrumentation. This paper proposes an electrical load classification model using support vector machine (SVM). SVM was chosen to keep the computational cost low and be able to implement an embedded system. The SVM model was utilized to classify the on/off state of air conditioners, light bulbs, other uncategorized electronics, and their combinations. It utilizes low-frequency sampling data captured every minute, or at a 0.0167 Hz rate. Utilization change in active and reactive power was used as a feature in the model training. The optimal kernel for the model was the radial basis function (RBF) kernel with C and gamma values of 88.587 and 2.336 as hyperparameters, producing a highly accurate model. In testing with real-time conditions, the model classified the on/off state of the electrical loads with 0.93 precision, 0.91 recall, and 0.91 f-score. The results of testing proved that the model can be applied in real time with high accuracy and with an acceptable performance in field implementation using an embedded system.
Downloads
References
Chel, A. & Kaushik, G., Renewable Energy Technologies for Sustainable Development of Energy Efficient Building, Alexandria Engineering Journal, 57(2), pp. 655-669, Jun. 2018. doi: 10.1016/J.AEJ.2017.02.027.
Mi, Z., Guan, D., Liu, Z., Liu, J., Vigui V., Fromer, N. & Wang, Y., Cities: The Core of Climate Change Mitigation, J Clean Prod, 207, pp. 582-589, Jan. 2019. doi: 10.1016/J.JCLEPRO.2018.10.034.
Batra, N., Parson, O., Berges, M., Singh, A. & Rogers, A., A Comparison of Non-Intrusive Load Monitoring Methods for Commercial and Residential Buildings, CoRR, ArXiv, abs/1408.6595, 2014.
Gopinath, R., Kumar, M., Joshua, C.P.C. & Srinivas, K., Energy Management Using Non-Intrusive Load Monitoring Techniques ? State-Of-The-Art and Future Research Directions, Sustain Cities Soc, 62(June), 102411, 2020. doi: 10.1016/j.scs.2020.102411.
Nalmpantis, C. & Vrakas, D., Machine Learning Approaches for Non-Intrusive Load Monitoring: From Qualitative to Quantitative Comparation, Artif Intell Rev, 52(1), pp. 217-243, Jun. 2019. doi: 10.1007/S10462-018-9613-7/TABLES/3.
Hosseini, S.S., Agbossou, K., Kelouwani, S., & Cardenas, A., Non-Intrusive Load Monitoring Through Home Energy Management Systems: A Comprehensive Review, Renewable and Sustainable Energy Reviews, 79(May), pp. 1266-1274, 2017. doi: 10.1016/j.rser.2017.05.096.
Wang, A.L., Chen, B.X., Wang, C.G. & Hua, D., Non-Intrusive Load Monitoring Algorithm Based on Features Of V?I Trajectory, Electric Power Systems Research, 157, pp. 134-144, Apr. 2018. doi: 10.1016/J.EPSR.2017.12.012.
Liu, Y., Wang, X. & You, W., Non-Intrusive Load Monitoring by Voltage-Current Trajectory Enabled Transfer Learning, IEEE Trans Smart Grid, 10(5), pp. 5609-5619, Sep. 2018. doi: 10.1109/TSG.2018.2888581.
Baets, L.D., Develder, C., Dhaene, T. & Deschrijver, D., Detection of Unidentified Appliances in Non-Intrusive Load Monitoring Using Siamese Neural Networks, International Journal of Electrical Power & Energy Systems, 104, pp. 645-653, Jan. 2019. doi: 10.1016/J.IJEPES.2018.07.026.
Bonfigli, R., Principi, E., Fagiani, M., Severini, M., Squartini, S. & Piazza, F., Non-intrusive Load Monitoring by Using Active and Reactive Power in Additive Factorial Hidden Markov Models, Appl Energy, 208, pp. 1590-1607, Dec. 2017. doi: 10.1016/J.APENERGY.2017.08.203.
Valenti, M., Bonfigli, R., Principi, E. & Squartini, S., Exploiting the Reactive Power in Deep Neural Models for Non-Intrusive Load Monitoring, Proceedings of the International Joint Conference on Neural Networks, vol. 2018-July, Oct. 2018. doi: 10.1109/IJCNN.2018.8489271.
Wittmann, F.M., Lopez, J.C. & Rider, M.J., Nonintrusive Load Monitoring Algorithm Using Mixed-Integer Linear Programming, IEEE Transactions on Consumer Electronics, 64(2), pp. 180-187, May 2018. doi: 10.1109/TCE.2018.2843292.
Houidi, S., Auger, F., Sethom, H.B.A., Fourer, D. & Mieville, L., Multivariate Event Detection Methods for Non-Intrusive Load Monitoring in Smart Homes and Residential Buildings, Energy Build, 208, 109624, Feb. 2020. doi: 10.1016/J.ENBUILD.2019.109624.
Zheng, Z., Chen, H. & Luo, X., A Supervised Event-Based Non-Intrusive Load Monitoring for Non-Linear Appliances, Sustainability 2018, 10(4), 1001, Mar. 2018. doi: 10.3390/SU10041001.
Lin, Y.H., & Hu, Y. C., Electrical Energy Management Based on a Hybrid Artificial Neural Network-Particle Swarm Optimization-Integrated Two-Stage Non-Intrusive Load Monitoring Process in Smart Homes, Processes 2018, 6(12), p. 236, Nov. 2018. doi: 10.3390/PR6120236.
Moradzadeh, A., Mohammadi-Ivatloo, B., Abapour, M., Anvari-Moghaddam, A., Farkoush, S.G. & Rhee, S.B., A practical solution based on Convolutional Neural Network for Non-Intrusive Load Monitoring, J Ambient Intell Humaniz Comput, 12(10), pp. 9775-9789, Oct. 2021. doi: 10.1007/S12652-020-02720-6/TABLES/5.
Hu, M., Tao, S., Fan, H., Li, X., Sun, Y. & Sun, J., Non-Intrusive Load Monitoring for Residential Appliances with Ultra-Sparse Sample and Real-Time Computation, Sensors, 21(16), pp. 1-18, 2021. doi: 10.3390/s21165366.
Hernandez, A.S., Ballado, A.H. & Heredia, A.P.D., Development of a Non-Intrusive Load Monitoring (NILM) with Unknown Loads using Support Vector Machine, 2021 IEEE International Conference on Automatic Control and Intelligent Systems, I2CACIS 2021 - Proceedings, pp. 203-207, Jun. 2021. doi: 10.1109/I2CACIS52118.2021.9495876.
Salem, H., Sayed-Mouchaweh, M. & Tagina, M., Unsupervised Bayesian Non-Parametric Approach for Non-Intrusive Load Monitoring Base on Time of Usage, Neurocomputing, 435, pp. 239-252, May 2021. doi: 10.1016/J.NEUCOM.2020.12.096.
Mostafavi, S. & Cox, R.W., An Unsupervised Approach in Learning Load Patterns for Non-Intrusive Load Monitoring, Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control, ICNSC 2017, pp. 631-636, Aug. 2017. doi: 10.1109/ICNSC.2017.8000164.
Brucke, K., Arens, S., Telle, J.S., Steens, T., Hanke, B., Maydell, K.v. & Agert, C., A Non-Intrusive Load Monitoring Approach for Very Short-Term Power Predictions in Commercial Buildings, Appl Energy, 292, 116860, Jun. 2021. doi: 10.1016/J.APENERGY.2021.116860.
Ma, H., Jia, J., Yang, X., Zhu, W. & Zhang, H., Mc-Nilm: A Multi-Chain Disaggregation Method for Nilm, Energies (Basel), 14(14), pp. 1-14, 2021. doi: 10.3390/en14144331.
Kim, H. & Lim, S., Temporal Patternization of Power Signatures for Appliance Classification in Nilm, Energies (Basel), 14(10), 2021. doi: 10.3390/en14102931.
Houidi, S., Fourer, D., Auger, F., Sethom, H.B.A., & Mieville, L., Comparative Evaluation of Non-Intrusive Load Monitoring Methods Using Relevant Features and Transfer Learning, Energies (Basel), 14(9), pp. 1-28, 2021. doi: 10.3390/en14092726.
D?Incecco, M., Squartini, S., & Zhong, M., Transfer Learning for Non-Intrusive Load Monitoring, IEEE Trans Smart Grid, 11(2), pp. 1419-1429, Mar. 2020. doi: 10.1109/TSG.2019.2938068.
Li, Y., Liu, Y., Zhang, Z., Shi, F., Li, G. & Wang, K., Non-intrusive Load Monitoring Method Based on Transfer Learning and Sequence-to-point Model, Proceedings - 2021 IEEE Sustainable Power and Energy Conference: Energy Transition for Carbon Neutrality, iSPEC 2021, pp. 2366-2370, 2021. doi: 10.1109/ISPEC53008.2021.9735675.
Li, Y., Yang, Y., Sima, K., Li, B., Sun, T., & Li, X., Non-Intrusive Load Monitoring Based on Harmonic Characteristics, Procedia Comput Sci, 183, pp. 776-782, 2021. doi: 10.1016/j.procs.2021.02.128.
Soelami, F.X.N, Utama, P.H.K, Haq, I.N., Pradipta, J., Leksono, E. & Wasesa, M., Data Driven Building Electricity Consumption Model Using Support Vector Regression, Journal of Engineering and Technological Sciences, 53(3), 2021. doi: 10.5614/j.eng.technol.sci.2021.53.3.13.
Haq, I.N., Kurniadi, D., Leksono, E. & Yuliarto, B., Performance Analysis of Energy Storage in Smart Microgrid Based on Historical Data of Individual Battery Temperature and Voltage Changes, Journal of Engineering and Technological Sciences, 51(2), pp. 149-169, 2019. doi: 10.5614/j.eng.technol.sci.2019.51.2.1.
Awad, M. & Khanna, R., Support Vector Machines for Classification,in Efficient Learning Machines, Berkeley, CA: Apress, pp. 39-66, , 2015. doi: 10.1007/978-1-4302-5990-9_3.
Zhang, P., Li, W., Li, S., Wang, Y. & Xiao, W., Reliability Assessment of Photovoltaic Power Systems: Review of Current Status and Future Perspectives, Appl Energy, 104, pp. 822-833, Apr. 2013. doi: 10.1016/j.apenergy.2012.12.