Compensation of INS/LBL Navigation Errors in a Polynomial Sound-Speed-Profile

Authors

  • Yohannes Sampang Martua Simamora Engineering Physics Research Group, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia https://orcid.org/0000-0003-3435-2824
  • Harijono A. Tjokronegoro Engineering Physics Research Group, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
  • Edi Leksono Engineering Physics Research Group, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
  • Irsan S. Brodjonegoro Offshore Engineering Research Group, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2022.54.2.11

Keywords:

long baseline, sensor fusion, sonar, sound speed profile, underwater acoustics

Abstract

This paper presents an autonomous underwater vehicle (AUV) navigation scheme that pairs an inertial navigation system (INS) and a long baseline (LBL) acoustic positioning system. The INS is assigned to be the main navigation aid because of its faster rate. Meanwhile, the LBL provides position reference for compensation of the INS? main inherent drawback, i.e., accumulating errors. However, the LBL has to deal with time-of-flight (ToF) measurements that may not be carried out under line-of-sight (LoS) circumstances. This is because the propagation speed of underwater acoustic waves is subject to the sound-speed-profile (SSP) of the area in question. This paper?s contribution is to consider the SSP in ToFs while addressing the above scheme. Specifically, the discrete approach to raytracing was implemented. For a given ToF, the Snell?s parameter of the wave is estimated and subsequently used to compute the horizontal range. The ToF results are then used to estimate the position of the AUV, while the position is obtained from a depth sensor. It was shown by simulation that the estimators can provide navigation with accuracy <0.5 m2, as it manages to compensate for errors. Since the estimation of Snell?s parameter is prone to exhibit imaginary numbers, future work should consider a more robust method to tackle this problem.

Downloads

Download data is not yet available.

Author Biography

Irsan S. Brodjonegoro, Offshore Engineering Research Group, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

Offshore Engineering Research Group

References

Titterton, D., Weston, J.L. & Weston, J., Strapdown Inertial Navigation Technology, 17, IET, 2004.

Schmidt, G.T., INS/GPS Technology Trends, NATO RTO Report RTO-EN-SET-064, 2004.

Bensky, A., Wireless Positioning Technologies and Applications 2nd ed., Artech House, 2016.

Al-Shamma?a, A.I., Shaw, A. & Saman, S., Propagation of Electromagnetic Waves at MHz Frequencies through Seawater, IEEE Trans. Ant. Prop., 52(11), pp. 2843-2849, 2004.

Thorp, W.H., Deep?Ocean Sound Attenuation in the Sub and Low?Kilocycle?per?Second Region. J. Acoust. Soc. America, 38(4), pp. 648-654, 1965.

Vickery, K., Acoustic Positioning Systems, A Practical Overview of Current Systems, in: Proc. the 1998 Workshop on AUV, pp. 5-17, 1998

Stojanovic, M. & Preisig, J., Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization, IEEE Comm. Mag., 47(1), pp. 84-89, 2009.

Breer, J., Reisdorf, P., Obst, M. & Wanielik, G., GNSS Positioning in Non-Line-of-Sight Context ? A Survey, 2016 IEEE ITSC, Rio de Janeiro, pp. 1147-1154, 2016.

Mackenzie, K.V., Nine?Term Equation for Sound Speed in the Oceans, J. Acoust. Soc. America, 70(3), pp. 807-812, 1981.

Etter, P.C., Underwater Acoustic Modeling and Simulation 5th ed. CRC Press, 2018.

Ameer, P.M. & Jacob, L., Localization Using Ray Tracing for Underwater Acoustic Sensor Networks, IEEE Comm. Lett., 14(10), 930-932, 2010

Ramezani, H., Jamali-Rad, H., & Leus, G., Target Localization and Tracking for an Isogradient Sound Speed Profile, IEEE Trans. Sign. Proc., 61(6), pp. 1434-1446, 2013.

Zhang, Y., Li, Y., Zhang, Y. & Jiang, T., Underwater Anchor-AUV Localization Geometries with an Isogradient Sound Speed Profile: A CRLB-Based Optimality Analysis, IEEE Trans. Wireless Comm., 17(12), pp. 8228-8238, 2018.

Dong, Y., Sun, C. & Zhang, K., Underwater Localization with Sound Velocity Profile, Proc. 13th ACM Int. Conf. Underwater Netw. & Syst. ACM, Shenzen, China, 51, 2018.

Li, Y., Wang, W., Liu, M., Zhang, S. & Lian, J., Underwater Target Tracking in Three-Dimensional Space Based on Sound Speed Profile, Proc. 38th Chinese Contr. Conf., Ghuangzou, China, pp. 3052-3057, 2019.

Huang, C., Wu, M., Huang, X., Cao, J., He, J., Chen, C., Zhai, G., Deng, K. & Lu, X., Reconstruction and Evaluation of the Full-Depth Sound Speed Profile with World Ocean Atlas 2018 for the Hydrographic Surveying in the Deep-Sea Waters, App. Ocean Res., 101, pp. 1-12, 2020.

Wang, X., Khazaie, S. & Chen, X., Linear Approximation of Underwater Sound Speed Profile: Precision Analysis in Direct and Inverse Problems, App. Acoust., 140, pp. 63-73, 2018.

Noureldin, A., Karamat, T.B. & Georgy, J., Fundamentals of Inertial Navigation, Satellite-based Positioning and Their Integration, Springer Science & Business Media, 2012.

Silva, T. & Batista, P., Long Baseline Navigation Filter with Clock-Offset Estimation, Nonlinear Dyn., 100, pp. 2557-2573, 2020.

Zhang, T., Shi, H., Chen, L., Li, Y., & Tong, J., AU Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation. Sensors, 16(3), 357, 2016.

Zhang, T. Chen, L. & Li, Y., AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL, Sensors, 16(1), 42, 2016.

Simamora, Y.S.M., Brodjonegoro, I.S., Tjokronegoro, H.A. & Leksono, E., On Pseudorange Estimation in a Quadratic Sound Speed Profile, 2019 IEEE CSUDET, Penang, Malaysia, pp. 284-289, 2019.

Simamora, Y.SM., Tjokronegoro, H.A., Leksono, E. & Brodjonegoro, I.S., Compensation of INS Errors based on LBL References in a Quadratic Sound-Speed-Profile, ITIS, Surabaya, 2020.

Bahrami, N., Khamis, N.H.H., Baharom, A. & Yahya, A., Underwater Channel Characterization to Design Wireless Sensor Network by Bellhop. Telkomnika, 14(1), pp. 110-118, 2016.

Webster, S.E., Eustice, R.M., Singh, H. & Whitcomb, L.L., Advances in Single-Beacon One-Way-Travel-Time Acoustic Navigation for Underwater Vehicles, Int. J. Robot. Res., 31(8), pp. 935-949, 2012.

Simamora, Y.SM., Tjokronegoro, H.A., Leksono, E. & Brodjonegoro, I.S., Compensation of Time-Varying Clock-Offset in a LBL Navigation, BEEI, 9(4), pp. 1364-1372, 2020.

Kim, H.Y, Modeling and Tracking Time-Varying Clock Drifts in Wireless Networks, PhD diss., Georgia Institute of Technology, 2014.

Kim, H., Ma, X. & Hamilton, B.R., Tracking Low-Precision Clocks with Time-Varying Drifts Using Kalman Filtering. IEEE/ACM Trans. Netw., 20(1), pp. 257-270, 2012.

Hovem, J.M., Ray Trace Modeling of Underwater Sound Propagation, Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices, IntechOpen, pp. 573-594, 2013.

Strang, G., Introduction to Linear Algebra 5th ed., Wellesley-Cambridge Press, 2016.

Batista, P., Long Baseline Navigation with Clock Offset Estimation and Discrete-Time Measurements, Contr. Eng. Pract., 35, pp. 43-53, 2015.

Petritoli, E., Lecesse, F. & Leccisi, M., Inertial Navigation Systems for UAV: Uncertainty and Error Measurements, 2019 IEEE MetroAeroSpace, Torino, Italy, pp. 218-222, 2019.

Chen, J., New Modified Regula Falsi Method for Nonlinear Equations, App. Math. Comp., 184(2), pp. 965-971, 2007.

Chapra, S.C., & Canale, R.P., Numerical Methods for Engineers 7th ed., McGraw-Hill, 2011.

Terajanu, G., Discrete Kalman Filter Tutorial, Dept. Computer Science and Engineering, University at Buffalo, 2013.

Brodjonegoro, I.S., Lecture on Advanced Underwater Acoustics, Ocean Engineering Graduate Program, ITB, January-April 2017.

Downloads

Published

2022-03-31

How to Cite

Simamora, Y. S. M., Tjokronegoro, H. A. ., Leksono, E., & Brodjonegoro, I. S. (2022). Compensation of INS/LBL Navigation Errors in a Polynomial Sound-Speed-Profile. Journal of Engineering and Technological Sciences, 54(2), 220211. https://doi.org/10.5614/j.eng.technol.sci.2022.54.2.11

Issue

Section

Articles

Most read articles by the same author(s)