An Algorithm to Construct a Tridiagonal Matrix Factored by Bidiagonal Matrices with Prescribed Eigenvalues and Specified Entries

Authors

  • Koichi Kondo Graduate School of Science and Engineering, Doshisha University, Tatara-Miyakodani 1-3, Kyotanabe, Kyoto 610-0394, Japan

DOI:

https://doi.org/10.5614/j.math.fund.sci.2024.56.3.5

Keywords:

determinant expression, discrete soliton theory, inverse eigenvalue problem, LR decomposition, tridiagonal matrix

Abstract

This paper presents an algorithm to construct a tridiagonal matrix factored by bidiagonal matrices with prescribed eigenvalues and specified matrix entries. The proposed algorithm addresses inverse eigenvalue problems (IEPs) constrained by LR decomposition. Using techniques from discrete soliton theory, we derive recurrence relations that connect matrix entries and eigenvalues. The algorithm systematically computes unknown entries in the matrix from given spectrum data and partial matrix information. Several examples, including cases with real, complex, and multiple eigenvalues, demonstrate the efficiency of the proposed algorithm. Additionally, we provide conditions under which the algorithm successfully solves the IEP.

References

Chu, M.T. & Golub, G.H., Inverse Eigenvalue Problems, Oxford University Press, 1-9, 2005.

Chu, M.T., Inverse Eigenvalue Problem, SIAM Review, 40(1), pp. 1-39, 1998.

Chu, M.T. & Golub, G.H., Structured Inverse Eigenvalue Problems, Acta Numerica, 11, pp. 1-71, 2002.

Akaiwa, K., Iwasaki, M., Kondo, K. & Nakamura, Y., A Tridiagonal Matrix Construction by the Quotient Difference Recursion Formula in the Case of Multiple Eigenvalues, Pacific Journal of Mathematics for Industry, 6, 10, pp. 1-9, 2014.

Akaiwa, K., Nakamura, Y., Iwasaki, M., Tsutsumi, H. & Kondo, K., A Finite-step Construction of Totally Nonnegative Matrices with Specified Eigenvalues, Numerical Algorithms, 70, pp. 469-484, 2015.

Akaiwa, K., Nakamura, Y., Iwasaki, M., Yoshida, A. & Kondo, K., An Arbitrary Band Structure Construction of Totally Nonnegative Matrices with Prescribed Eigenvalues, Numerical Algorithms, 75, pp. 1079-1101, 2017.

Akaiwa, K., Yoshida, A. & Kondo, K., An Improved Algorithm for Solving an Inverse Eigenvalue Problem for Band Matrices, Electronic Journal of Linear Algebra, 38, pp. 745-759, 2022.

Hirota, R., Solutions to Discrete Soliton Equations, RIMS Kokyuroku Bessatsu, B47, pp. 097-115, 2014.

Tsujimoto, S., On a Discrete Analogue of the Two-dimensional Toda lattice Hierarchy, Publications of the Research Institute for Mathematical Sciences, 38(1), pp. 113-133, 2002.

Chu, M.T. & Golub, G.H., Inverse Eigenvalue Problems, Oxford University Press, 77-79, 2005.

Boor, C. & Golub, G.H., The Numerically Stable Reconstruction of a Jacobi Matrix from Spectral Data, Linear Algebra and its Applications, 21(3), pp. 245-260, 1978.

Chihara, T.S., An Introduction to Orthogonal Polynomials, Gordon and Breach, 1-50, 1978.

Henrici, P., Applied and Computational Complex Analysis, Volume 1: Power Series Integration Conformal Mapping Location of Zero, John Wiley, 594-641, 1974.

Spiridonov, V. & Zhedanov, A., Discrete-time Volterra Chain and Classical Orthogonal Polynomials, Journal of Physics A: Mathematical and General, 30, pp. 8727-8737, 1997.

Rutishauser, H., Ein Infinitesimales Analogon Zum Quotienten-Differenzen-algorithmus, Archiv der Mathematik, 5(1-3), pp. 132-137, 1954.

Hirota, R., Tsujimoto, S. & Imai, T., Difference Scheme of Soliton Equations, Future Directions of Nonlinear Dynamics in Physical and Biological Systems, Christiansen, P.L., Eilbeck, J.C. & Parmentier, R.D. (eds.), Plenum, pp. 7-15, 1993.

Downloads

Published

2025-04-25

How to Cite

Kondo, K. (2025). An Algorithm to Construct a Tridiagonal Matrix Factored by Bidiagonal Matrices with Prescribed Eigenvalues and Specified Entries. Journal of Mathematical and Fundamental Sciences, 56(3), 242-256. https://doi.org/10.5614/j.math.fund.sci.2024.56.3.5

Issue

Section

Articles