Thickness Effect on Fluctuation of Electron States in Thin Film and Implications for Lattice Constant Change Due to Size Reduction


  • Nadya Amalia Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132,
  • Sparisoma Viridi Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132,
  • Mikrajuddin Abdullah Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Bandung Innovation Center, Jalan Sembrani 19, Bandung



electron states, nanoparticles, potential fluctuation, size dependent lattice constant, thin film


We propose a model for predicting the fluctuation of electron states in thin films as a function of film thickness. The model is derived based on the assumption of the existence of potential barrier fluctuation on the film surface. Since the wave functions of electrons in the film are determined by the boundary conditions of the potential on the film surface, the potential fluctuation on the film surface implies fluctuation of the electron states in the film. The model was extended to predict the effect of size on the lattice constant of thin films or nanoparticles.


Goswami, A., Thin Film Fundamentals, New Age International, 1996.

Gasiorowicz, S., Quantum Physics, John Wiley & Sons, 2007.

Griffiths, D.J., Introduction to Quantum Mechanics, Pearson Education India, 2005.

Tsunekawa, S., Ishikawa, K., Li, Z. Q., Kawazoe, Y. & Kasuya, A., Origin of Anomalous Lattice Expansion in Oxide Nanoparticles, Physical Review Letters, 85(16), pp. 3440, 2000.

Tsunekawa, S., Sivamohan, R., Ito, S., Kasuya, A. & Fukuda, T., Structural Study on Monosize CeO 2-x Nano-particles, Nanostructured Materials, 11(1), pp. 141-147, 1999.

Tsunekawa, S., Ito, S. & Kawazoe, Y., Surface structures of Cerium Oxide Nanocrystalline Particles from The Size Dependence of The Lattice Parameters, Applied Physics Letters, 85(17), pp. 3845-3847, 2004.

Ayyub, P., Palkar, V.R., Chattopadhyay, S. & Multani, M., Effect of Crystal Size Reduction on Lattice Symmetry and Cooperative Properties, Physical Review B, 51(9), pp. 6135, 1995.

Cimino, A., Porta, P., & Valigi, M., Dependence of The Lattice Parameter of Magnesium Oxide on Crystallite Size, Journal of The American Ceramic Society, 49(3), pp. 152-156, 1966.

Li, G., Boerio-Goates, J., Woodfield, B F., & Li, L., Evidence of Linear Lattice Expansion and Covalency Enhancement in Rutile TiO2 Nanocrystals, Applied Physics Letters, 85(11), pp. 2059-2061, 2004.

Schmid, H.K., Quantitative Analysis of Polymorphic Mixes of Zirconia by X" ray Diffraction, Journal of The American Ceramic Society, 70(5), pp. 367-376, 1987.

Tsunekawa, S., Ito, S., Mori, T., Ishikawa, K., Li, Z.Q. & Kawazoe, Y., Critical Size and Anomalous Lattice Expansion in Nanocrystalline BaTiO3 Particles, Physical Review B, 62(5), pp. 3065, 2000.

Akdogan, E.K., Rawn, C.J., Porter, W.D., Payzant, E.A. & Safari, A., Size Effects in PbTiO3 Nanocrystals: Effect of Particle Size on Spontaneous Polarization and Strains, Journal of Applied Physics, 97(8), pp. 084305, 2005.

Selbach, S.M., Tybell, T., Einarsrud, M.A., & Grande, T., Size-Dependent Properties of Multiferroic BiFeO3 Nanoparticles, Chemistry of Materials, 19(26), pp. 6478-6484, 2007.

Vermaak, J.S. & Kuhlmann-Wilsdorf, D., Measurement of The Average Surface Stress of Gold as A Function of Temperature in The Temperature Range 50-985. deg., The Journal of Physical Chemistry, 72(12), pp. 4150-4154, 1968.

Solliard, C. & Flueli, M., Surface Stress and Size Effect on The Lattice Parameter in Small Particles of Gold and Platinum, Surface Science, 156, pp. 487-494, 1985.

Siegel, J., Lyutakov, O., Rybka, V., Kolska, Z. & A vorA k, V., Properties of Gold Nanostructures Sputtered on Glass, Nanoscale Research Letters, 6(1), pp. 96, 2011.

Wasserman, H.J. & Vermaak, J.S., On The Determination of A Lattice Contraction in Very Small Silver Particles, Surface Science, 22(1), pp. 164-172, 1970.

Montano, P.A., Schulze, W., Tesche, B., Shenoy, G.K. & Morrison, T.I., Extended X-Ray-Absorption Fine-Structure Study of Ag Particles Isolated in Solid Argon, Physical Review B, 30(2), pp. 672, 1984.

Montano, P.A., Zhao, J., Ramanathan, M., Shenoy, G.K., Schulze, W. & Urban, J., Structure of Silver Microclusters, Chemical Physics Letters, 164(2-3), pp. 126-130, 1989.

Medasani, B., Park, Y.H. & Vasiliev, I., Theoretical Study of The Surface Energy, Stress, and Lattice Contraction of Silver Nanoparticles, Physical Review B, 75(23), pp. 235436, 2007.

Yu, X.F., Liu, X., Zhang, K. & Hu, Z.Q., The lattice Contraction of Nanometre-Sized Sn and Bi Particles Produced by An Electrohydrodynamic Technique, Journal of Physics: Condensed Matter, 11(4), pp. 937, 1999.

Liang, L.H., Li, J.C. & Jiang, Q., Size-Dependent Melting Depression and Lattice Contraction of Bi Nanocrystals, Physica B: Condensed Matter, 334(1), pp. 49-53, 2003.

Wasserman, H.J. & Vermaak, J.S., On the determination of The Surface Stress of Copper and Platinum, Surface Science, 32(1), pp. 168-174, 1972.

Yu, D.K., Zhang, R.Q. & Lee, S.T., Structural Transition in Nanosized Silicon Clusters, Physical Review B, 65(24), pp. 245417, 2002.

Apai, G., Hamilton, J.F., Stohr, J. & Thompson, A., Extended X-Ray-Absorption Fine Structure of Small Cu and Ni Clusters: Binding-Energy and Bond-Length Changes with Cluster Size, Physical Review Letters, 43(2), pp. 165, 1979.

Da Silva, E.Z. & Antonelli, A., Size dependence of The Lattice Parameter for Pd Clusters: A Molecular-Dynamics Study, Physical Review B, 54(23), pp. 17057, 1996.

Lamber, R., Wetjen, S. & Jaeger, N.I., Size Dependence of The Lattice Parameter of Small Palladium Particles, Physical Review B, 51(16), pp. 10968, 1995.

Zhang, J.Y., Wang, X.Y., Xiao, M., Qu, L. & Peng, X., Lattice Contraction in Free-Standing CdSe Nanocrystals, Applied Physics Letters, 81(11), pp. 2076-2078, 2002.

Sarangi, S.N. & Sahu, S.N., CdSe Nanocrystalline Thin Films: Composition, Structure and Optical Properties, Physica E: Low-Dimensional Systems and Nanostructures, 23(1), pp. 159-167, 2004.

Tsunekawa, S., Sahara, R., Kawazoe, Y. & Ishikawa, K., Lattice Relaxation of Monosize CeO 2a^x Nanocrystalline Particles, Applied Surface Science, 152(1), pp. 53-56, 1999.

Shin, H.S., Yu, J., Song, J.Y., Park, H.M. & Kim, Y.S., Origins of Size-Dependent Lattice Dilatation in Tetragonal Sn Nanowires: Surface Stress and Growth Stress, Applied Physics Letters, 97(13), pp. 131903, 2010.

Sun, C.Q., Size Dependence of Nanostructures: Impact of Bond Order Deficiency, Progress in Solid State Chemistry, 35(1), pp. 1-159, 2007.

Jiang, Q., Liang, L. H. & Zhao, D.S., Lattice Contraction and Surface Stress of Fcc Nanocrystals, The Journal of Physical Chemistry B, 105(27), pp. 6275-6277, 2001.

Palosz, B., Grzanka, E., Gierlotka, S., Stel'makh, S., Pielaszek, R., Lojkowski, W. & Palosz, W., Application of X-ray Powder Diffraction to Nano-Materials-Determination of The Atomic Structure of Nanocrystals with Relaxed and Strained Surfaces, Phase Transitions: A Multinational Journal, 76(1-2), pp. 171-185, 2003.

Qi, W.H. & Wang, M.P., Size and Shape Dependent Lattice Parameters of Metallic Nanoparticles, Journal of Nanoparticle Research, 7(1), pp. 51-57, 2005.

Qin, W., Chen, Z.H., Huang, P.Y. & Zhuang, Y.H., Crystal Lattice Expansion of Nanocrystalline Materials, Journal of Alloys and Compounds, 292(1), pp. 230-232, 1999.

Zhu, Y.F., Zheng, W.T. & Jiang, Q., Modeling Lattice Expansion and Cohesive Energy of Nanostructured Materials, Applied Physics Letters, 95(8), pp. 083110, 2009.

Qin, W., Nagase, T., Umakoshi, Y. & Szpunar, J. A., Lattice Distortion and Its Effects on Physical Properties of Nanostructured Materials, Journal of Physics: Condensed Matter, 19(23), pp. 236217, 2007.

Tonejc, A.M., Djerdj, I. & Tonejc, A., An Analysis of Evolution of Grain Size-Lattice Parameters Dependence in Nanocrystalline TiO2 Anatase. Materials Science and Engineering: C, 19(1), pp. 85-89, 2002.

Li, G., Li, L., Boerio-Goates, J. & Woodfield, B. F., High Purity Anatase TiO2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry, Journal of the American Chemical Society, 127(24), pp. 8659-8666, 2005.

Morales, B.A., Novaro, O., Lopez, T., Sanchez, E. & Gomez, R. Effect of Hydrolysis Catalyst on The Ti Deficiency and Crystallite Size of Sol-Gel-TiO2 Crystalline Phases, Journal of Materials Research, 10(11), pp. 2788-2796, 1995.

Cheng, B.P., Kong, J., Luo, J. & Dong, Y.D., Relation of Structure Stability and Debye Temperature to Crystal Size of Nanometer Sized TiO2 Powders, Cailiao Kexue Jinzhan (Materials Science Progress), OALib Journal, 7(3), pp. 240-243, 1993.

Li, Y., White, T.J. & Lim, S. H., Low-Temperature Synthesis and Microstructural Control of Titania Nano-Particles, Journal of solid State Chemistry, 177(4), pp. 1372-1381, 2004.

Swamy, V., Menzies, D., Muddle, B. C., Kuznetsov, A., Dubrovinsky, L. S., Dai, Q. & Dmitriev, V., Nonlinear Size Dependence of Anatase TiO2 Lattice Parameters, Applied Physics Letters, 88(24), pp. 243103, 2006.

Leontyev, I.N., Kuriganova, A.B., Leontyev, N.G., Hennet, L., Rakhmatullin, A., Smirnova, N.V. & Dmitriev, V., Size Dependence of The Lattice Parameters of Carbon Supported Platinum Nanoparticles: X-Ray Diffraction Analysis and Theoretical Considerations, RSC Advances, 4(68), pp. 35959-35965, 2014.

Chen, L., Fleming, P., Morris, V., Holmes, J.D. & Morris, M.A., Size-Related Lattice Parameter Changes and Surface Defects in Ceria Nanocrystals, The Journal of Physical Chemistry C, 114(30), pp. 12909-12919, 2010.

Sarkar, T. P., Gopinadhan, K., Motapothula, M., Saha, S., Huang, Z., Dhar, S. & Pallecchi, I., Unexpected Observation of Spatially Separated Kondo Scattering and Ferromagnetism in Ta Alloyed Anatase TiO2 Thin Films, Scientific Reports, 5, 2015. DOI:10.1038/srep13011

Zhang, H., Chen, B. & Banfield, J.F., The Size Dependence of The Surface Free Energy of Titania Nanocrystals, Phys. Chem. Chem. Phys., 11(14), pp. 2553-2558, 2009. DOI:10.1039/B819623K

Abdullah, M., Nanosciences & Nanotechnology, ITB Publisher, Bandung, Indonesia, 2015. (Text in Indonesian)

Ahmad, M.I. & Bhattacharya, S.S., Size Effect on The Lattice Parameters of Nanocrystalline Anatase, Applied Physics Letters, 95(19), pp. 191906, 2009.

Wei, Z., Xia, T., Ma, J., Feng, W., Dai, J., Wang, Q. & Yan, P., Investigation of The Lattice Expansion for Ni Nanoparticles, Materials characterization, 58(10), pp. 1019-1024, 2007.

Lin, C.M., Hung, T.L., Huang, Y.H., Wu, K.T., Tang, M. T., Lee, C.H. & Chen, Y.Y., Size-Dependent Lattice Structure of Palladium Studied by X-Ray Absorption Spectroscopy, Physical Review B, 75(12), pp. 125426, 2007.

Kolska, Z., Aha, J., Hnatowicz, V. & A vorA k, V., Lattice Parameter and Expected Density of Au Nano-Structures Sputtered on Glass, Materials Letters, 64(10), pp. 1160-1162, 2010.