Donsker’s Delta Functional of Stochastic Processes with Memory
DOI:
https://doi.org/10.5614/j.math.fund.sci.2019.51.3.5Keywords:
Donsker delta functional, Hida calculus, local time, stochastic process with memory, white noiseAbstract
A class of stochastic processes with memory within the framework of the Hida calculus was studied. It was proved that the Donsker delta functionals of the processes are Hida distributions. Furthermore, the probability density function of the processes and the chaos decomposition of the Donsker delta functional were derived. As an application, the existence of the renormalized local times in an arbitrary dimension of the Riemann-Liouville fractional Brownian motion as a white noise generalized function was proved.References
Bernido, C.C. & Carpio-Bernido, M.V., Stochastic Path Summation with Memory, in Int. J. Mod. Phys: Conf. Series 36, Christopher C. Bernido & M. Victoria Carpio-Bernido (ed(s).), pp. 1560006-1-1560006-8, 2015.
Bernido, C.C., Carpio-Bernido, M.V. & Escobido, M.G.O., Modified Diffusion with Memory for Cyclone Track Fluctuation, Phys. Lett. A., 378, pp. 2016-2019, 2014.
Biagini, F., Hu, Y., ksendal, B. & Zhang, T., Stochastic Calculus for Fractional Brownian Motion and Applications, Springer-Verlag, 2008.
Ilyin, V., Procaccia, I. & Zagorodny, A., Stochastic Processes Crossing from Ballistic to Fractional Diffusion with Memory: Exact Results, Phys. Rev. E., 81, pp. 1-4, 2010
Samorodnitsky, G., Stochastic Processes and Long Range Dependence, Springer-Verlag, 2016.
Nourdin, I., Selected Aspects of Fractional Brownian, Springer-Verlag, 2012.
Hida, T. Kuo, H-H., Potthoff, J. & Streit, W. White Noise. An Infinite Dimensional Calculus, Kluwer Academic Publishers, 1993.
Kuo, H.H., White Noise Distribution Theory, CRC Press, 1996.
Obata, N., White Noise Calculus and Fock Space, Springer-Verlag, 1994.
Kondratiev, Y.G., Generalized Functionals in Gaussian Spaces: The Characterization Theorem Revisited, J. Funct. Anal., 141, pp. 301-318, 1996.
Bock, W., Da Silva, J.L. & Suryawan, H.P., Local Times for Multifractional Brownian Motions in Higher Dimensions: A White Noise Approach, Inf. Dim. Anal. Quantum Prob., 19(4), pp. 1-14, 2016.
Grothaus, M., Riemann, F., & Suryawan, H.P., A White Noise Approach to The Feynman Integrand for Electrons in Random Media, J. Math. Phys., 55, pp. 1-16, 2014.
Suryawan, H.P., Gaussian White Noise Analysis and Its Application to Feynman Path Integral, in AIP Conference Proceedings 1707, Fajar Adi Kusumo, et al. (ed(s).), pp. 1-10, 2016.
Gradshteyn, I.S. & Ryzhik, I.M., Table of Integrals, Series, and Products, 8th ed., Academic Press, 2015.
Kuo, H.H., Introduction to Stochastic Integration, Springer-Verlag, 2006.
Watanabe, H., The Local Time of Self-Intersection of Brownian Motions as Generalized Brownian Functionals, Letters in Math. Phys., 23, pp. 1-9, 1991.