Matriks Fundamental II
Abstract
Ringkasan. Suatu matriks kwadratis kita katakana fundamental djika ia simetris dan setiap submatriks utamanja mempunjai deretminan jang positif. Misalkan f suatu bentuk bilinier pada suatu ruang vector berdimensi hingga atas lapangan riil, dan f berkoresponensi dengan suatu matriks G. kita buktikan, bahwa f suatu hasilkali-dalam djika dan hanja djika G fundamental.
Abstract. We define a square matrix to be fundamental if it is symmetric and all its principal submatrices have positive determinants. Let f be a bilinear form on finite-dimensional vector space over the real field which corresponds to a matrix G. We prove that f is an inner-product if and only if G is fundamental.
References
Arifin,A., Matriks Fundamental, Bagian Matematika,I.T.B., (Desember 1970).
Birkhoff,G., and Maclane,S., A Survey of Modern Algebra, revised ed., The Macmillan Company, New York, N.Y., 1960.
Kromodihardjo,K., Diktat Aldjabar Linier, Bagian Matematika, I.T.B. 1968.
Lang,S., Algebra, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1965.
Thrall,R.M., and Tornheim,L., Vector Spaces and Matrices, John Wiley and Sons, Inc., New York, 1962.


