Matriks Fundamental II

Authors

  • Achmad Arifin Bagian Matematika ITB

Abstract

Ringkasan. Suatu matriks kwadratis kita katakana fundamental djika ia simetris dan setiap submatriks utamanja mempunjai deretminan jang positif. Misalkan f suatu bentuk bilinier pada suatu ruang vector berdimensi hingga atas lapangan riil, dan f berkoresponensi dengan suatu matriks G. kita buktikan, bahwa f suatu hasilkali-dalam djika dan hanja djika G fundamental.


Abstract. We define a square matrix to be fundamental if it is symmetric and all its principal submatrices have positive determinants. Let f be a bilinear form on finite-dimensional vector space over the real field which corresponds to a matrix G. We prove that f is an inner-product if and only if G is fundamental.

References

Arifin,A., Matriks Fundamental, Bagian Matematika,I.T.B., (Desember 1970).

Birkhoff,G., and Maclane,S., A Survey of Modern Algebra, revised ed., The Macmillan Company, New York, N.Y., 1960.

Kromodihardjo,K., Diktat Aldjabar Linier, Bagian Matematika, I.T.B. 1968.

Lang,S., Algebra, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1965.

Thrall,R.M., and Tornheim,L., Vector Spaces and Matrices, John Wiley and Sons, Inc., New York, 1962.

Downloads

How to Cite

Arifin, A. (2019). Matriks Fundamental II. Journal of Mathematical and Fundamental Sciences, 6(3), 65-73. Retrieved from https://journals.itb.ac.id/index.php/jmfs/article/view/9727

Issue

Section

Articles