PENYISIHAN PEWARNA TEKSTIL REAKTIF OLEH JAMUR PELAPUK PUTIH DAN EKSTRAK KASAR ENZIM LAKASE YANG DIPRODUKSI PADA SUBMERGED FERMENTATION FORM

https://doi.org/10.5614/j.tl.2019.25.2.1

Authors

  • Edwan Kardena Program Studi Teknik Lingkungan, FTSL, Institut Teknologi Bandung
  • Intan Lestari Dewi

Abstract

Abstrak: Pengolahan air limbah tekstil yang mengandung antrakuinon dan pewarna azo merupakan tantangan besar karena struktur aromatik dan toksisitasnya yang kompleks. Penelitian ini mempelajari penyisihan pewarna antrakuinon reactive blue 4 (RB4), single azo reactive orange 16 (RO16), dan diazo reactive red 120 (RR120) juga reactive black 5 (RB5) dengan konsentrasi awal 150 mg/L dalam medium padat (PDA) dan submerged fermentation form (SFF) menggunakan berbagai jamur pelapuk putih (JPP). T. versicolor memiliki aktivitas enzim dominan terbaik (lakase) di antara JPP lain (186 U.l-1). Studi penyisihan warna diamati pada kondisi SFF dan hanya menggunakan ekstrak kasar enzim lakase. Untuk kultur cairan jamur menggunakan medium kirk, T. versicolor secara positif dapat menyisihkan pewarna tekstil reaktif. Diantara empat pewarna yang digunakan, RB4 memiliki persentase penyisihan warna tertinggi (99,99%), dibandingkan dengan RB5 (98,03%), RR120 (90,56%) dan RO16 (63,52%). Uji stabilitas pH dan suhu menunjukkan bahwa ekstrak kasar enzim lakase memiliki aktivitas terbaik dalam kisaran pH 2,4 dan suhu 20 0C. Persentase penyisihan warna terbaik menggunakan ekstrak kasar enzim lakase adalah RB4 yaitu 99,84% dengan waktu inkubasi selama 60 menit. Metabolit yang terbentuk setelah biotransformasi oleh ekstrak kasar enzim lakase diamati menggunakan FTIR. Hasil spektra FTIR menunjukkan bahwa struktur antrakuinon, ikatan nitrogen, dan gugus amina RB4 dapat dipecah oleh ekstrak kasar enzim lakase. Studi toksisitas menggunakan Bacillus sp. menegaskan bahwa produk biotransformasi RB4 berkurang toksisitasnya dibandingkan dengan pewarna induk sebelum dilakukan pengolahan.

 

Kata kunci: Azo, Antrakuinon, Jamur pelapuk putih, Lakase

 

Abstract: Treatment of textile wastewater containing anthraquinone and azo dye is quite a huge challenge due to its complex aromatic structure and toxicity. This study investigated the decolorization of anthraquinone dye reactive blue 4 (RB4), Single azo reactive orange 16 (RO16), and diazo reactive red 120 (RR120) also reactive black 5 (RB5) with initial concentration of 150 mg/l in solid medium (PDA) and Submerged fermentation form (SFF) by various white rot fungi (WRF). T. versicolor has the best dominant enzyme activity (laccase) among others WRF (186 U.l-1). Decolorization study was observed in both SFF condition and using only crude enzyme. For SFF using kirk medium T. versicolor positively degrading reactive textile dyes. Among four different dyes, RB4 has the highest decolorization percentage (99.99%), compared to RB5 (98.03 %), RR120 (90.56 %) and RO16 (63.52 %). pH and thermo stability test show that laccase crude enzyme has the best activity in pH range 2.4 and temperature of 20 0C. The best decolouration percentage using crude enzyme is RB4 as obtained 99.84% in 60 min. The metabolites formed after biotransformation was characterized by FT-IR. The results of FTIR spectra showed that the anthraquinone structures, nitrogen linkages and amino groups of RB4 were destroyed by laccase crude enzyme. Toxicity study using Bacillus sp. confirmed that biotransformation product of RB4 is less toxic compared to parent dye. 

 

Keywords: Azo, Anthraquinone, Laccase, White rot fungi

References

Afreen, S., Anwer, R., Singh, R.K., dan Fatma, T. (2016):

Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes, Saudi J. Biol. Sci.

Arantes, V., dan Milagres, A.M.F. (2006): Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction, Journal of Chemical Technology & Biotechnology, 81, 413-9

Banat, I.M., Nigam, P., Singh, D., dan Marchant, R. (1996): Microbial decolorization of textile-dye-containing effluents: a review, Biore-source Technol, 58, 217-227.

Centele, C., Fontana, R.C., Mezzomo, A.G., da Rosa, L.O., Poleto, L., Camassola, M., dan Dillon, A.J.P. (2017): Production, characterization and dye decolorization ability of a highlevel laccase from Marasmiellus palmivorus, Biocatalysis and Agricultural Biotechnology, 12, 15-22.

Dias, A.A., Bezerra, R.M., Lemos, P.M., dan Pereira A.N. (2003): In vivo and Laccasecatalysed Decolourization of Xenobiotic Azo Dyes by a Basidiomycetous Fungus: Characterization of Its Ligninolytic System, World Journal of Microbiology and Biotechnology, 19, 969-975

Dwipayani, A. R., & Notodarmodjo, S. (2013). Penggunaan Lempung sebagai Adsorben dan Coagulant Aid dalam Penyisihan Cod Limbah Cair Tekstil. Jurnal Teknik Lingkungan, 19(2), 130-139.

Enayatizamir, N., Tabandeh, F., Rodriguez-Couto, S., Yakhchali, B., Alikhani, H.A., dan Mohammadi, L. (2011): Biodegradation pathway and detoxification of the diazo dye Reactive Black 5 by Phanerochaete chrysosporium, Bioresource Technology, 102, 10359-10362

Erkurt, E.A. Erkurt, H.A. dan Unyanyar, A. (2009). Decolorization of Azo Dyes by White Rot Fungi, Hdb Env Chem., 9, 157-167.

Erkurt, E.A., Unyayar, A., dan Kumbur, H. (2007): Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process, Process Biochemistry, 42, 1429-1435.

Hanung, C.D., Osmond, R., Risdianto, H., Suhardi, S.H., dan Setiadi, T. (2013): Optimisasi produksi enzim lakase pada fermentasi kultur pada menggunakan jamur pepelapuk putih Marasmius sp.: Pengaruh ukuran partikel, kelembaban, and konsentrasi Cu, Jurnal Selulosa, 3, 67 - 74.

Jadhav, J.P., Kalyani, D.C., Telke, A.A., Phugare, S.S., dan Govindwar, S.P. (2010): Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent, Bioresour Technol, 101, 165-173.

Jayapal, M., Jagadeesan, H., Shanmugam, M., Danisha J., P., dan Murugesan, S. (2018): Sequential anaerobic-aerobic treatment using plant microbe integrated system for degradation of azo dyes and their aromatic amines by-products, Journal of Hazardous Materials, 354, 231-243

Johannes, C., dan Majcherczyk, A. (2000): Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems, Appl. Environ. Microb., 66, 524-528.

Johannes, T.W., Woodyer, R.D., dan Zhao, H. (2006): High-Throughput Screening Methods Developed for Oxidoreductases, dalam Reymond, J.L. (Ed.), Enzyme Assays: High-Throughput Screening, Genetic Selection and Fingerprinting, ISBN: 3-527-31095-9, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 77 - 92.

Kementerian Perindustrian. 2018. Ringkasan Eksekutif Perkembangan Ekspor dan Impor Industri Pengolahan Bulan Juni 2018, diakses tanggal 30 Januari 2019 pukul 20.00 WIB.

Kocyigit, A., Pazarbasi, M.B., Yasa, I., Ozdemir, G., dan Karaboz, I. (2012): Production of laccase from Trametes trogii TEM H2: a newly isolatd white-rot fungus by air sampling, J. Basic Microbiol., 52, 661-669.

Kuwahara, M., Glenn, J.K., Morgan, M.A., dan Gold, M.H. (1984): Separation and Characterization of Two Extracelullar H2O2-dependent Oxidases from Ligninolytic Cultures of Phanaerochaete chrysosporium, European Biochemical Societies, 169, 247-250.

Legerska, B., Chmelova, D., dan Ondrejovic, M. (2016): Degradation of Synthetic Dyes by Laccases - A Mini-Review. Nova Biotechnologica et Chimica. 15, 90-106.

Levin, L., Melignani, E., dan Ramos, A. (2010): Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi Dye decolorization by selected culture filtrates, Bioresour. Technol., 101, 4554-4563.

Ling, Z.R., Wang, S.S., Zhu, M.J., Ning, Y.J., Wang, S.N., Li, B., Yang, A.Z., Zhang, G.Q., dan Zhao, X.M. (2015): An extracellular laccase with potential dye decolorizing ability from white rot fungus Trametes sp. LAC-01, Int. J. Biol. Macromol. 81, 785-793.

Magalhes, D.B., de Carvalho, M.E.A., Bon, E., Neto, J.S.A., dan Kling, S.H. (1996): Colorimetric assay for lignin peroxidase activity determination using methylene blue as a substrate, Biotechnology Techniques, 10, 273-276.

Majcherczyk, A., Johannes, C., dan Hutterman, A., (1999): Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by the 2,20-azinobis-(3 ethylbenzthiazoline-6-sulphonic acid) cation radical and dication. Appl. Microbiol. Biot. 51, 267-276.

Manfred, H., Meier, H. dan Zeeh, B. (1997): Spectroscopic Methods in Organic

Chemistry, New York: George Thieme.

Margot, J., Granier, C.B., Maillard, J., Blanquez, P., Barry, D.A., dan Holliger, C. (2013): Bacterial Versus Fungal Laccase: Potential for Micropollutant Degradation, AMB Express, 3, 1 - 14.

Martina, A., (2005): Kemampuan Ganoderma sp. strain Lokal mendegradasi lignin pada beberapa konsentrasi lindi hitam, Prosiding seminar UNRI UKM ke-3, Pekanbaru.

Miao, H., dan Tao, W. (2008): Ozonation of humic acid in water, J. Chem. Technol. Biot., 83, 336-344.

Miller, R.K. (1977): Infrared spectroscopy in The Analytical Chemistry of Synthetic Dyes, Venkataraman, K., ed., John Wiley & Sons, Inc.

More, S.S., Renuka, P.S., Pruthvi, K., Swetha, M., Malini, S., Veena, S.M. (2011): Isolation, purification, and characterization of fungal laccase from Pleurotus sp., Enzym. Res., 2011-2017.

Munoz, C., Guillen, F., Martinez, A.T., dan Martinez, M.J. (1997): Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation, Applied and Environmental Microbiology, 63, 66-74.

Osma, J.F., Toca-Herrera, J.S., dan Rodrguez-Couto, S. (2010): Transformation pathway of Remazol Brilliant Blue R by immobilised laccase, Bioresource Technology, 101, 8509-8514.

Parmar, N., dan Shukla, S.R. (2015): Microbial decolorization of reactive dye solutions. Clean- Soil Air Water, 43, 1426-1432

Patrick, F., Mtui, G., Mshandete, A.M., dan Kivaisi, A. (2011): Optimization of laccase and manganese peroxidase production in submerged culture of Pleurotus sajor-caju, African Journal of Biotechnology, 10, 10166-10177.

Ramsay, J.A., dan Nguyen, T. (2002): Decolorisation of textile dyes by Trametes versicolor and its effect on dye toxicity, Biotechnol Lett, 24, 57-61.

Ratanapongleka, K., dan Phetsom, J. (2014): Decolorization of Synthetic Dyes by Crude Laccase from Lentinus Polychrous Lev., International Journal of Chemical Engineering and Application, 5, 26-30.

Rathnan, R.K., Anto, S. M., Rajan, L., Sreedevi, E. S., Ambili, M., dan Balasaravan, T. (2013): Comparative studies of Decolorization of Toxic Dyes with Laccase Enzymes producing Mono and Mixed cultures of Fungi, Research Article, 1, 21- 24.

Risdianto, H. (2007): Produksi Lakase dari Marasmius sp. Menggunakan Bioreaktor Imersi Berkala Termodifikasi untuk Pemutihan Pulp Kimia, Tesis, Teknik Kimia, Institut Teknologi Bandung, Indonesia.

Rivera-Hoyos, C.M., Morales-Alvarez, E.D., Poutou-Pinales, R.A., Pedroza-Rodriguez, A.M., Rodriguez-Vazquez, R., dan Delgado-Boada, J.M. (2013): Fungal laccases, Fungal Biol. Rev. 27, 67-82

Senthilkumar S., Perumalsamy M., dan Prabhu, J. (2014): Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B, Journal of Saudi Chemical Society, 18, 845-853.

Senthivelan T., Kanagaraj, J., dan Panda, R.C. (2016): Recent trends in fungal Laccase for various industrial applications: an eco-friendly approach - a review, Biotechnol. Bioproc. Eng., 21, 19-38

Sharma, K.K., Shrivastava, B., Sastry, V.R., Sehgal, N., dan Kuhad, R.C. (2013): Middle-redox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals. Sci. Rep. 3, 1299

Sheth, N.T., dan Dave, S.R. (2009): Optimisation for enhanced decolourization and degradation of Reactive Red BS C.I. 111 by Pseudomonas aeruginosa NGKCTS, Biodegradation, 20, 827-836.

Tiara, A. (2014). Uji Toksisitas Akut Pada Ipal Terpadu Kawasan Industri Tekstil Terhadap Daphnia magna DI DAYEUHKOLOT. Jurnal Teknik Lingkungan, 20(2), 109-119.

Trejo, E.B., Benavides, L.M., dan Yanez, J.M.S. (2015): Inconsistencies and Ambiguities in Calculating Enzyme Activity: The Case of Laccase, Journal of Microbiological Methods, 119, 126 - 131.

Wang, S.N., Chen, Q.J., Zhu, M.J., Xue, F.Y., Li, W.C., Zhao, T.J., Li, G.D., dan Zhang, G.Q. (2018): An extracellular yellow laccase from white rot fungus Trametes sp. F1635 and its mediator systems for dye decolorization, Biochimie, 148, 46-54.

Watanapokasin, R.Y., Boonyakamol. A., Sukseree, S., Krajarng, A., Sophonnithiprasert, T., Kanso, S., dan Imai, T. (2008): Hydrogen production and anaerobic decolorization of wastewater containing Reactive Blue 4 by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa, Biodegradation, 20, 411-418.

Wong, Y., dan Yu, J. (1999): Laccase-catalyzed decolorization of synthetic dyes, Water Res., 33: 3512-3520.

Zheng, F., Cui, B.K., Wu, X.J., Meng, G., Liu, H.X., dan Si, J. (2016): Immobilization of laccase onto chitosan beads to enhance its capacity to degrade synthetic dyes, Int. Biodeterior. Biodegradation, 110, 69-78.

Published

2019-10-02

How to Cite

Kardena, E., & Dewi, I. L. (2019). PENYISIHAN PEWARNA TEKSTIL REAKTIF OLEH JAMUR PELAPUK PUTIH DAN EKSTRAK KASAR ENZIM LAKASE YANG DIPRODUKSI PADA SUBMERGED FERMENTATION FORM. Jurnal Teknik Lingkungan, 25(2), 1-18. https://doi.org/10.5614/j.tl.2019.25.2.1

Issue

Section

Articles