KAJI NUMERIK GROUND PAD SHOE KENDARAAN TEMPUR DENGAN MODEL MATERIAL HYPERELASTIC
Abstrak
One of the important components on a combat vehicle is the ground pad shoe (GPS) or track pad. GPS that has been developed at this time mostly uses rubber material. Rubber raw materials themselves are found in Indonesia in large amount. Indonesia left 3 million tonnes of natural rubber unprocessed in 2018. On the other hand, natural rubber research is quite expensive and takes a long time to become a product. To make rubber products is needed special molds and tests. To solve the high costs and long time involved in rubber research, it is necessary to carry out numerical research. In this study, a numerical study of GPS rubber for combat vehicles was carried out with a hyperelastic material model. The research was conducted experimentally and numerically. Tensile testing is carried out on imported GPS samples which are then used as comparison data for numerical studies. The Mooney-Rivlin, Neo-Hookean, Yeoh, and Ogden hyperelastic models were varied to get the stress and strain values closest to the experimental test. The results of the numerical study show that the best hyperelastic model for the imported GPS rubber model is the Neo-Hookean model. The tensile strength of GPS according to the experimental tensile test results is 16.93 MPa, while the result of the finite element method (FEM) is 16.75 MPa. The GPS modulus 200% according to the experimental tensile test results is 14.7 mm/mm, while the FEM result is 15.3 mm/mm. The difference between the FEM and experimental test values for tensile strength and modulus 200% are below 5%. Maximum stress on GPS is 4,4 MPa and safety factor 3,8.
Referensi
UU no 34 tahun 2004
Permenhan no 46 tahun 2016
https://www.pindad.com (10 September 2020)
www.dw.com (10 September 2020)
www.bisnis.tempo.com (31 Maret 2021)
Novia, Analisis Komponen Ground Pad Shoe pada Aplikasi Kendaraan Tempur untuk Memperkiraan Usia Pakai Komponen, Skripsi S1 ITB, 2020
Hisyam, M., Rekayasa Balik Rubber Track Pad untuk Medium Weight Tank, Skripsi S1 ITB, 2020
Bergstorm E.W.,, 1975, Technical Report; Wear Resistant Rubber Tank Track Pads, General Thomas J. Rodman Laboratory
Sunday Star Ledger,1983,
Touchet US Patent, United states Patent; Rubber Compound For Track Vehicle Tracks Pad, (PN 5,264,290; 23 Nov 1993 www.anrpc.org (7 September 2020)
Badan Penelitian dan Pengembangan Pertanian, Prospek dan Arah pengembangan agribisnis karet, 2005
www.anrpc.org (7 September 2020)
Erman, B., Mark, J.E., Roland, C.M., The Science and Rubber Technology Fourth Edition, Elsevier, 2013.
Lindley, T.B., Engineering Design with Natural Rubber, The Malaysian Rubber Producers Research Association, 1978.
Fan, Y., Fowler, G.D., Zhao, M., The Past, Present and Future of Carbon Black as a Rubber Reinforcing Filler - A Review, Journal of Cleaner Production, 247,119115, 2020.
Flanagan, D.P., Touchet, P., & Feuer, H.O., Elastomers for Tracked Vehicles: 19801997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles, Army Research Lab Aberdeen Proving Ground Md Weapons and Materials Research, 2015.
Arti, D.K.,Pengaruh Variasi Komposisi Bahan Pengisi Carbon Black dan Silika pada Sifat Viskoelastis Kompon Karet untuk Tread Ban, Majalah Kulit, Karet, dan Plastic, e-ISSN: 2460-4461, 2018.
Putra, D.A., Pemanfaatan Lignin Kraft sebagai Bahan Pengganti Resin, Carbon Black, dan Filler Additive pada Vulkanisat Komponen Tread Ban Pcr, Tugas Sarjana ITB, 2017.
Purba, L.S.M., Pemanfaatan Kraft Lignin sebagai Pengganti Resin dan sebagai Silika untuk Bahan Pengisi pada Vulkanisat Ban SUV, Tugas Sarjana ITB, 2017.
Zhang, Z., Guo, F., Ke, Y., Xiang, C., Jia, X., Effect of Vulcanization on Deformation Behavior of Rubber Seals: Thermal–Mechanical–Chemical Coupling Model, Numerical Studies, and Experimental Validation
Liu, W., Failure Analysis of the Rubber Track of a Tracked Transporter, Advanced in Mechanical Engineering, 10, 201
Ihueze, C.C., & Mgbemena, C.O., Modeling Hyperelastic Behavior of Natural Rubber or Organomodified Kaolin Composites Oleochemically Derived from Tea Seed Oils (Camellia sinensis) for Automobile Tire Side Walls Application, Journal of Scientific Research & Reports, 3(19), pp. 2528-2542, 2014.
Gudsoorkar, U., Bindu, R., Computer Simulation Of Hyperelastic Re-Treaded Tire Rubber With ABAQUS, Materials Today: Proceeding, 43, pp. 1992-2001, 2020.
Rajesh, A., Narayana, B.S., Sreeramulu, K., Characterization of Hyperelastic Material Using Experimental Data and Finite Element Simulation, Materials Today: Proceedings, 24, pp. 1660–1669, 2020.
Hongyu, W., Fei, T., Zhen, W., Pengchao, Z., Juncai, S., Shijun, J., Simulation Research About Rubber Pad Forming of Corner Channel with Convex or Concave Mould, Journal of Manufacturing Processes, 40, pp. 94-104, 2009.
Fei, T., Hongyu, W., Shengnan, S., Lei, J., Juncai, S., Jie, S., Hongshuang, D., Shunhu, Z., Simulation and Experimental Researches on Multi Plate Rubber Pad Forming of Two Step Micro Channel Based on Different Forming Driving Models, Journal of Advanced Manufacturing Technology, 120, 2022, p4147-4157
Li, X., Wei, Y., Classic Strain Energy Functions and Constitutive Tests of Rubberlike Materials, Rubber Chemistry and Technology, 88 (4), pp. 604–627, 2015.
He, H., Zhang, Q., Zhang, Y., Chen, J., Zhang, L., Li, F., A Comparative Study of 85 Hyperelastic Constitutive Models for Both Unfilled Rubber and Highly Filled Rubber Nanocomposite Material, Nano Materials Science, 2021
Nur Muhammad Malikul Adil, Muhammad Agus Kariem, Numerical Study of Friction Behavior In Pneumatic Seal Cylinder, Mesin, 28(1), 2019
Mardiyati, Srahputri, N., Steven, Suratman, R., Sifat Tarik dan Sifat Impak Komposit Polipropilena High Impact Berpenguat Serat Rami Acak yang Dibuat dengan Metode Injection Molding, MESIN, 26(1), 2017
ASTM D412 Standard Method of Tension Testing of Vulcanized Rubber