Pengaruh Faktor dan Mekanisme Pengerasan Regangan pada Baja Hadfield

https://doi.org/10.5614/MESIN.2018.27.2.4

Penulis

  • Haris Wahyudi Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana, Jl. Meruya Selatan 01, Jakarta, Indonesia
  • Tatacipta Dirgantara Kelompok Keahlian Struktur Ringan, Fakultas Teknik Mesin dan Dirgantara, ITBJl. Ganesha 10, Bandung 40153, Indonesia
  • Rochim Suratman Kelompok Keahlian Ilmu dan Teknik Material, Fakultas Teknik Mesin dan Dirgantara, ITBJl. Ganesha 10, Bandung 40153, Indonesia
  • Aditianto Ramelan Kelompok Keahlian Ilmu dan Teknik Material, Fakultas Teknik Mesin dan Dirgantara, ITBJl. Ganesha 10, Bandung 40153, Indonesia

Abstrak

Abstract. Hadfield steel has good toughness, ductility, impact resistance, wear resistance and has excellent work hardening. It has a carbon content of 1-1.4% and manganese 11-14% by weight, a ratio of approximately 1:10. The potential for increasing its strength against strain hardening can be seen from the wide range of plastic strength, 379 MPa yield strength and 965 MPa tensile strength. The hardening of Hadfield steel strain depends on the type loading which affect the dislocation slip mechanism, twinning deformation, and the interaction between slip and twinning. The study of high strain rates in Hadfield steel is quite interesting and still relevant to date, although there have been many papers published. Hadfield cast steel which has a relatively low hardness, can be increased its hardness by treatment and high work hardening (high strain rate). There are factors that influence the hardness of Hadfield steel include alloying, solid solution process and high work hardening. Nitrogen as austenite stabilizer is important for work hardening, chromium and vanadium are added to increase hardness because it will form carbides, and aluminum is added to increase wear resistance. High strain rate deformation is applied to provide improved strength because of propensity of twinning mechanism is likely to occur. Optimum strain hardening by twinning mechanism can only be achieved at critical impact energy. Explosive hardening generates small deformations but provides significant changes in mechanical properties.

Abstrak. Baja Hadfield memiliki sifat ketangguhan, keuletan, ketahanan impak, ketahanan terhadap aus dan memiliki work hardening yang sangat baik. Memiliki kandungan unsur karbon 1-1,4% dan mangan 11-14% berat, rasio kurang lebih 1:10. Potensi peningkatan kekuatan terhadap pengerasan regangan, dapat dilihat dari rentang kekuatan plastis yang lebar, kekuatan luluh 379 MPa dan kekuatan tarik 965 MPa. Pengerasan regangan baja Hadfield tergantung kepada proses pembebanan melalui mekanisme slip dislokasi, deformasi twinning, serta interaksi antara slip dan twinning. Kajian tentang high strain rate pada baja Hadfield menjadi topik yang cukup menarik dan relevan, meskipun telah banyak publikasi yang dihasilkan. Baja Hadfield yang memiliki kekerasan relatif rendah, mampu ditingkatkan nilai kekerasannya melalui rekayasa perlakuan panas dan deformasi plastis secara cepat. Beberapa faktor yang mempengaruhi kekerasan baja Hadfield antara lain bahan paduan, perlakuan panas dan proses pengerasan regangan yang diberikan. Nitrogen sebagai penstabil austenit penting untuk pengerjaan dingin, kromium dan vanadium ditambahkan untuk meningkatkan kekerasan karena akan membentuk karbida, dan aluminum ditambahkan untuk meningkatkan ketahanan aus. Deformasi kecepatan regangan tinggi pada Hadfield memberikan peningkatan kekuatan lebih baik karena mekanisme twinning lebih dominan. Pengerasan regangan optimum oleh mekanisme twinning hanya dapat dicapai pada energi impak kritikal. Explosive hardening menghasilkan deformasi yang relatif kecil tetapi memberikan perubahan sifat mekanik yang signifikan.

Referensi

A. 128M ASTM International, "Standard Specification for Steel Castings, Austenitic Manganese," 2003.

J. D. Weeks, "HADFIELD'S MANGANESE STEEL," Science (80-. )., vol. ns-12, no. 306, pp. 284 LP - 286, Dec. 1888.

V. G. Gavriliuk and H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications. 1999.

D. Canadinc, I. Karaman, H. Sehitoglu, Y. I. Chumlyakov, and H. J. Maier, "The role of nitrogen on the deformation response of hadfield steel single crystals," Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2003.

Z. Ding, B. Liang, R. Zhao, and C. Chen, "Precipitation of carbides in early aging stages and their crystallographic orientations in hadfield steel Mn13," Met. Sci. Heat Treat., 2015.

J. O. Agunsoye, T. S. Isaac, and A. A. Abiona, "On the Comparison of Microstructure Characteristics and Mechanical Properties of High Chromium White Iron with the Hadfield Austenitic Manganese Steel," J. Miner. Mater. Charact. Eng., 2013.

I. El-Mahallawi, R. Abdel-Karim, and A. Naguib, "Evaluation of effect of chromium on wear performance of high manganese steel," Mater. Sci. Technol., 2001.

M. K. Pham, D. N. Nguyen, and A. T. Hoang, "Influence of vanadium content on the microstructure and mechanical properties of high-manganese steel," Int. J. Mech. Mechatronics Eng., 2018.

D. Canadinc, H. Sehitoglu, and H. J. Maier, "The role of dense dislocation walls on the deformation response of aluminum alloyed hadfield steel polycrystals," Mater. Sci. Eng. A, 2007.

E. G. Zakharova, I. V. Kireeva, Y. I. Chumlyakov, S. P. Efimenko, H. Sehitoglu, and I. Karaman, "Deformation mechanisms and strain hardening of Hadfield-steel single crystals alloyed with aluminum," Dokl. Phys., 2002.

B. K. Zuidema, D. K. Subramanyam, and W. C. Leslie, "EFFECT OF ALUMINUM ON THE WORK HARDENING AND WEAR RESISTANCE OF HADFIELD MANGANESE STEEL.," Metall. Trans. A, Phys. Metall. Mater. Sci., 1987.

S. B. Sant and R. W. Smith, "A study in the work-hardening behaviour of austenitic manganese steels," J. Mater. Sci., 1987.

P. H. Adler, G. B. Olson, and W. S. Owen, "Strain Hardening of Hadfield Manganese Steel," Metall. Mater. Trans. A, 1986.

Y. N. Dastur and W. C. Leslie, "MECHANISM OF WORK HARDENING IN HADFIELD MANGANESE STEEL.," Metall. Trans. A, Phys. Metall. Mater. Sci., 1981.

M. A. Shtremel and I. A. Kovalenko, "The mechanism of hardening of Hadfield steel," Fiz. Met. i Metalloved., vol. 63, no. 1, pp. 172-180, 1987.

W. S. Owen and M. Grujicic, "Strain aging of austenitic hadfield manganese steel," Acta Mater., 1998.

I. Karaman, H. Sehitoglu, A. J. Beaudoev, Y. I. Chumlyakov, H. J. Maier, and C. N. Tome, "Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip," Acta Mater., 2000.

Y. I. Chumlyakov, I. V. Kireeva, H. Sehitoglu, E. I. Litvinova, E. G. Zaharova, and N. V. Luzginova, "High-Strength Single Crystals of Austenitic Stainless Steels with Nitrogen Content: Mechanisms of Deformation and Fracture," Mater. Sci. Forum, 2009.

I. Karaman, H. Sehitoglu, K. Gall, and Y. I. Chumlyakov, "On The Deformation Mechanisms in Single Crystal Hadfield Manganese Steels," Scr. Mater., 1998.

I. Karaman, H. Sehitoglu, K. Gall, Y. I. Chumlyakov, and H. J. Maier, "Deformation of single crystal hadfield steel by twinning and slip," Acta Mater., 2000.

S. Kibey, J. B. Liu, D. D. Johnson, and H. Sehitoglu, "Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation," Acta Mater., 2007.

A. Dumay, J. P. Chateau, S. Allain, S. Migot, and O. Bouaziz, "Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel," Mater. Sci. Eng. A, 2008.

K. S. RAGHAVAN, A. S. Sastri, and M. J. Marcinkowski, "Nature of the work-hardening behavior in Hadfield's manganese steel," Trans. Metall. Soc. AIME, 1969.

E. Bayraktar, C. Levaillant, and S. Altintas, "Strain rate and temperature effect on the deformation behaviour of the original Hadfield steel," in Journal De Physique, 1993.

S. Curtze and V. T. Kuokkala, "Effects of temperature and strain rate on the tensile properties of TWIP steels," in 65th ABM International Congress, 18th IFHTSE Congress and 1st TMS/ABM International Materials Congress 2010, 2010.

H. S. Avery, "Austenitic Manganese Steel," in ASM Handbook, Volume 1, Properties and Selection: Irons, Steels, and High Performance Alloys, 2005, pp. 1274-1302.

F. C. Zhang, Z. N. Yang, L. H. Qian, F. C. Liu, B. Lv, and M. Zhang, "High speed pounding: A novel technique for the preparation of a thick surface layer with a hardness gradient distribution on Hadfield steel," Scr. Mater., 2011.

L. Xiaoyun, W. Wei, Z. Fangqiu, L. Lanjun, and Z. Xianfeng, "Influence of impact energy on work hardening ability of austenitic manganese steel and its mechanism," China Foundry, vol. 9, no. 3, pp. 248-251, 2012.

H. Enginsoy, E. Bayraktar, and A. KurAYun, "A Comprehensive Study on the Deformation Behavior of Hadfield Steel Sheets Subjected to the Drop Weight Test: Experimental Study and Finite Element Modeling," Metals (Basel)., 2018.

I. Farida, "Analisis Sifat Mekanik pada Baja Hadfield setelah Proses Solution Annealing, Solution Annealing dan Temper, Serta Repetitive Hammering," Institut Teknologi Bandung, 2019.

H. Wang, Z. Shi, X. Yaer, Z. Tong, and Z. Du, "High mechanical performance of AISI304 stainless steel plate by surface nanocrystallization and microstructural evolution during the explosive impact treatment," Journal of Materials Research and Technology, 2018.

A. A. Deribas, F. I. Matveenkov, and T. M. Sobolenko, "Explosive hardening of high-manganese steel," Combust. Explos. Shock Waves, 1969.

J. S. Rinehart, "Work-hardening of mild steel by explosive attack [4]," Journal of Applied Physics. 1951.

M. A. Krishtal, A. D. Lyuchkov, S. N. Verkhovskii, V. S. Vakhrusheva, and P. M. Yushkevich, "Hardening of quenched low-carbon steel during explosive forming," Met. Sci. Heat Treat., 1978.

F. E. Van Wely, "Comparison between the influence of cold pressing and explosive forming on material properties of steel," in 4th International Conference of the Center for High-Energy Forming, 1973, pp. 9-13.

M. Li, S. Zhao, and G. Shi, "EXPLOSIVE HARDENING OF HIGH Mn STEEL," Acta Metall. Sin. Lett., vol. 4, no. 9, p. 164, 1991.

I. A. Bataev, I. A. Balagansky, A. Bataev, and K. Hokamoto, "Transformation of Structure in Carbon Steel Specimen under Loading by Mach Stem, Formed in Preliminary Compressed High Explosive Charge TG-40," Mater. Sci. Forum, 2011.

T. L. Donukis, G. I. Savvakin, P. V. Titov, and L. G. Khandros, "Hardening of steel during explosive loading," Sov. Mater. Sci., 1973.

A. A. Deribas, A. A. Shtertser, and E. E. Zubkov, "EXPLOSIVE HARDENING AND ITS APPLICATION IN PRODUCTION OF RAILROAD SWITCH FROGS," in Explosive Production of New Materials: Science, Technology, Business, and Innovations, 2018.

F. Zhang et al., "Microstructure and Properties of Purity High Mn Steel Crossing Explosion Hardened," ISIJ Int., 2008.

F. C. Liu, B. Lv, F. C. Zhang, and S. Yang, "Enhanced work hardening in Hadfield steel during explosive treatment," Mater. Lett., 2011.

H. Petr and B. KateA™ina, "Experience with Explosive Hardening of Railway Frogs from Hadfield Steel," in Metal 2012, 2012.

M. Zhang, B. Lv, F. Zhang, and X. Feng, "Explosion Deformation and Hardening Behaviours of Hadfield Steel Crossing," ISIJ Int., 2012.

X. Y. Hu, Z. W. Shen, Y. Bin Liu, and T. S. liu, "On Elastic-Plastic Explosives for Explosive Hardening," Adv. Mater. Res., 2013.

Diterbitkan

2018-10-20

Cara Mengutip

Wahyudi, H., Dirgantara, T., Suratman, R., & Ramelan, A. (2018). Pengaruh Faktor dan Mekanisme Pengerasan Regangan pada Baja Hadfield. Mesin, 27(2), 40-54. https://doi.org/10.5614/MESIN.2018.27.2.4

Terbitan

Bagian

Articles

Artikel paling banyak dibaca berdasarkan penulis yang sama

1 2 > >>