Modifed Seismic Response Coefficient (CS) for Designing Super High-Rise Buildings using Performance-Based Design Method
DOI:
https://doi.org/10.5614/jts.2024.31.1.8Keywords:
Modified Seismic Response Coefficient (CS-M), Performance-Based Design (PBD), Risk-Targeted Maximum Considered Earthquake (MCER), Service-Level Earthquake (SLE), Tall Building Initiative (TBI)Abstract
Abstract
Performance-Based Design (PBD) method is widely used to design or evaluate super high-rise building against earthquake loads. The building is expected to present a certain level of performance set on FEMA 303 in response to ground motions, and should meet the target performance at Service Level Earthquake (SLE) and at Risk-Targeted Maximum Considered Earthquake (MCER). The performance level would be determined by using non-linear time history analysis and it requires non-linier parameter based on reinforcement of the structural elements. The common method proposed by Tall Building Initiative (TBI) requires the structural members are designed using response spectra at Service Level Earthquake (SLE). The problem is the ground motion and response spectra at Service Level Earthquake (SLE) are not always immediately available. In this paper, the modified seismic response coefficient (CS-M) is introduced in designing the structural members, as an initial step of Performance-Based Design (PBD), using the common response spectra of Risk-Targeted Maximum Considered Earthquake (MCER) instead of Service Level Earthquake (SLE). The performance of buildings is evaluated at Service Level Earthquake (SLE) and Risk-Targeted Maximum Considered Earthquake (MCER) to validate that design with modified seismic response coefficient (CS-M) is still in accordance with method by Tall Building Initiative (TBI).
Keywords: Modified Seismic Response Coefficient (CS-M), Performance-Based Design (PBD), Risk-Targeted Maximum Considered Earthquake (MCER), Service-Level Earthquake (SLE), Tall Building Initiative (TBI).
Abstrak
Metode Desain Berbasis Kinerja (PBD) banyak digunakan untuk merancang atau mengevaluasi bangunan super tinggi terhadap beban gempa bumi. Bangunan diharapkan dapat mencapai tingkat kinerja tertentu yang ditetapkan dalam FEMA 303 sebagai respons terhadap gerakan tanah, dan harus memenuhi kinerja target pada Service Level Earthquake (SLE) dan pada Risk-Targeted Maximum Considered Earthquake (MCER). Tingkat kinerja akan ditentukan dengan menggunakan analisis riwayat waktu non-linier dan membutuhkan parameter non-linier berdasarkan penulangan elemen struktural. Metode umum yang diusulkan oleh Tall Building Initiative (TBI) mengharuskan komponen struktural dirancang menggunakan respons spektra pada Service Level Earthquake (SLE). Masalahnya adalah gerakan tanah dan respons spektra pada Service Level Earthquake (SLE) tidak selalu tersedia secara langsung. Dalam paper ini, diperkenalkan koefisien respons seismik yang dimodifikasi (CS-M) dalam merancang komponen struktural, sebagai langkah awal Desain Berbasis Kinerja (PBD), dengan menggunakan respons spektra umum dari Risk-Targeted Maximum Considered Earthquake (MCER) sebagai ganti dari Service Level Earthquake (SLE). Kinerja bangunan dievaluasi pada kondisi Service Level Earthquake (SLE) dan Risk-Targeted Maximum Considered Earthquake (MCER) untuk memvalidasi bahwa desain dengan koefisien respons seismik yang dimodifikasi (CS-M) masih sesuai dengan metode yang diajukan oleh Tall Building Initiative (TBI).
Kata kunci: Koefisien Respons Seismik yang Dimodifikasi (CS-M), Desain Berbasis Kinerja (PBD), Risk-Targeted Maximum Considered Earthquake (MCER), Service-Level Earthquake (SLE), Tall Building Initiative (TBI).
References
ASCE. (2017). Seismic Evaluation and Retrofit of Existing Buildings (41-17). Virginia: American Society of Civil Engineers.
Budiono, B. (2017). Contoh Desain Bangunan Tahan Gempa. Bandung: ITB Press.
Chopra, Anil K. (2001). Dynamic of Structure: Theory and Applications to Earthquake Engineering. New Jersey: Prentice Hall.
CSI ETABS. (2017). Analysis Reference Manual for SAP2000, ETABS, SAFE, and CSiBridge. Computers & Structures Inc Developers.
CSI Perform 3D. (2016). Performance-Based Design of 3D-Structures User Guide. Computers & Structures Inc Developers.
FEMA 440. (2005). Improvement of Nonlinear Static Seismic Analysis Procedures. California: Building Seismic Safety Council.
FEMA P1050-2. (2015). NEHRP Recommended Seismic Provisions for New Buildings and Other Structures. California: Building Seismic Safety Council.
Imran, I., Hendrik, F. (2014). Perencanaan Lanjut Struktur Beton Bertulang. Bandung: ITB Press.
J. A. Patrisia et al. (2017). Evaluasi Reliabilitas Struktur Gedung Thamrin Nine - Tower 1 terhadap Beban Gempa MCER dengan Incremental Dynamic Analysis. HAKI.
PUSGEN. (2017). Peta Sumber dan Bahaya Gempa Indonesia. Jakarta: Puslitbang Perumahan dan Permukiman.
SNI 1726. (2019). Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung. Jakarta: Badan Standardisasi Nasional.
SNI 1727. (2020). Beban desain minimum dan kriteria terkait untuk bangunan dan struktur lain. Jakarta: Badan Standardisasi Nasional.
SNI 2847. (2019). Persyaratan beton struktural untuk bangunan. Jakarta: Badan Standardisasi Nasional.
TBI. (2017). Guidelines for Performance-Based Seismic Design of Tall Buildings Version 2.03. Berkeley: Pacific Earthquake Engineering Research Center (PEER).
Wayan, I. (2012). Investigation on Risk-Targeted Seismic Design Criteria for a High-rise Building in Jakarta-Indonesia. WCEE.