Pengaruh Limbah Polimer PET dan EVA sebagai Subtitusi Pasir Silika dan Semen terhadap Peningkatan Kuat Lentur, Sifat Fisis dan Karakterisasi Mortar Polimer
DOI:
https://doi.org/10.5614/jts.2024.31.3.3Keywords:
Polymer, mortar, EVA, PET, characterizationAbstract
Abstract
A study was conducted on the manufacture of polymer mortar using Polyethylene Terephthalate (PET) as a substitute for sand with a composition of 0%, 0.2%, 0.5%, 0.8%, 1.1%, 1.4% and Ethylene Vinyl Acetate (EVA) polymer composition of 0%, 2%, 4%, 6%, 8%, 10%. Sand, cement and polymer materials were weighed and molded into a size of 16 4 4 cm3 and soaked in water for 7 and 14 days. The highest flexural strength value obtained at 14 days of immersion was 6.50 MPa, porosity at 7 days of 12.20%, absorption value at 7 days of 6.65% and density at 14 days of 1.89 g/cm3 with a polymer substitution composition for sand of 10% EVA polymer: 1.4% PET. Characterization of the sample was carried out using X-ray Diffraction (XRD), X-ray fluorescence (XRF), Scanning Electron Microscope- Energy Dispersive X-ray spectroscopy (SEM-EDS), and Fourier-transform infrared spectroscopy (FTIR). XRF characterization obtained CaO of 46.95% and SiO2 of 24.45%, which is the result of CS-H formation. XRD characterization obtained calcite, quartz, corundum, hematite phases. SEM-EDS images show a cauliflower-like morphology and dominant elements of Ca and Si. FTIR functional groups are O-H, C=O, C-C, C-H, Si-O-Si, and Si-O is a portlandite group. The increasing addition of EVA and PET polymers results in high porosity and high flexural strength.
Keywords: Polymer, mortar, EVA, PET, and characterization.
References
ASTM C348?19. Standard Test Method for Flexural Strength of Hydraulic?Cement Mortars; ASTM International: West Conshohocken, PA, USA, 2019
ASTM C 270-10. Standard Specification for Mortar for Unit Masonry
Abdullah Almajeda,, Kehinde Lemboyea, Mohamed G. Arabb,, Ahmed Alnuaim, 2020. Mitigating wind erosion of sand using biopolymer-assisted EICP technique. Science Direct Soils and Foundations 60 (2020) 356?371. https://doi.org/10.1016/j.sandf.2020.02.011
Ali Sikandar. M.A, Zeeshan Khan, Muhammad Haris Javed, Muhammad Tariq Bashir, Easa Khan, Md. Munir Hayet Khan, Azhar Qazi. 2024. Comparative study of light emitting cement and polymer mortars for sustainable building applications: performance evaluation and analysis. Innovative Infrastructure Solutions (2024) 9:168 https://doi.org/10.1007/s41062-024-01491-9.
Bartoli, J. A. dan Bartoli, J. J. 1965. Mortar Compositions. US Patent. Vol. 2, No. 82, Hal. 93-106.
Benosman, A. S., Mouli, M., Taibi, H., Belbachir, M., Senhadji, Y., Behlouli, I., dan Houivet, D. 2012. Mineralogical study of polymer-mortar composites with PET polymer by means of spectroscopic analyses.Vol. 1, No. 3, Hal.139-150. DOI:10.4236/msa.2012.33022
BhavnaTripathi. 2024. Effectsof Polymerson Cement Hydration and Propertiesof Concrete:AReview. ACS Omega2024,9,2014?2021. https://doi.org/10.1021/acsomega.
Chowdhury. A. T.U, Mahmud Amin Mahi, Kazi Azizul Haque, Md. Mostafizur Rahman, 2018. A Review On The Use Of Polyethylene Terephthalate (Pet) As Aggregates In Concrete. Malaysia Journal Of Science 37 (2): 118 - 136 (2018). Https://Doi.Org/10.22452/Mjs.Vol37no2.4
Dai. J, Qicai Wang, Xuyu Lou, Xueying Bao, Bo Zhang, Jianqiang Wang, Xin Zhang. 2021. Solution calorimetry to assess effects of water-cement ratio and low temperature on hydration heat of cement. Construction and Building Materials Volume 269, 1 February 2021, 121222. https://doi.org/10.1016/j.conbuildmat.2020.121222
Foti, D. dan Lerna, M. 2020. New mortar mixes with chemically depolymerized waste PET aggregates. Advances in Materials Science and Engineering. Vol 16, No. 8, Hal.1-9. doi.org/10.1155/2020/8424936
Fan. Lidan, Feng Xu, Shuren Wang, Yongqiang Yu, Jiyun Zhang, Jiaqi Guo. 2023. A review on the modification mechanism of polymer on cement-based materials. 8 journal of materials research and technology 2023;26:5816e5837. https://doi.org/10.1016/j.jmrt.2023.08.291
Ghally, E. I., Khalil, H. F., dan Bakr, M. F. 2022. Evaluation the chemical and mechanical properties of EVA modified concrete. Egyptian Journal of Chemistry. Vol. 65, No. 4, Hal. 403-410. DOI: 10.21608/EJCHEM.2022.117998.5320
Garcia. M.L, M. Rosio Oliveira, Teresa Neto Silva, Ana C. Meira Castro. 2021. Performance of mortars with PET. Journal of Material Cycles and Waste Management https://doi.org/10.1007/s10163-020-01160-w
Gulzar. S, Muhammad Nawaz Chaudhry, Jean-Pierre Burg, Sohail Anwer Saeed, 2014. Chemical Weathering of Lime Mortars from the Jahangir Tomb, Lahore-Pakistan. International Journal of Scientific Research in Chemical Engineering, 1(7), pp. 106-114, 2014. . http://dx.doi.org/10.12983/ijsrce-2014-p0106-0114
Hughes, T. L., Methven, C. M., Jones, T. G., Pelham, S. E., Fletcher, P., dan Hall, C. 1995. Determining cement composition by Fourier transform infrared spectroscopy. Advanced Cement Based Materials. Vol. 2, No. 3, Hal. 91-104. doi.org/10.1016/1065-7355(94)00031-X
Hamdi. F, Franky Edwin Lapian, Miswar Tumpu, Mansyur, Irianto, Didik Suryamiharja S Mabui, Adri Raidyarto, Ardi Azis Sila, Masdiana, Parea Rusan Rangan, Hamkah.TEKNOLOGI BETON. CV. Tohar Media Cetakan Pertama Maret 2022. ISBN : 978-623-5603-29-2
Hu. C, Yunxing Ruan, Shun Yao, Fazhou Wang, Yongjia He, Yueyi Gao. 2019. Insight into the evolution of the elastic properties of calcium-silicate-hydrate (C-S-H) gel. Cement and Concrete Composites Volume 104, November 2019, 103342. https://doi.org/10.1016/j.cemconcomp.2019.103342
Kim, M. O. 2020. Influence of polymer types on the mechanical properties of polymer-modified cement mortars. Applied Sciences. Vol. 10, No. 3, Hal. 1061. doi.org/10.3390/app10031061
Kuzielov E., Slan M., ?emli?ka, M., Milko, J., dan Palou, M. T. 2021. Phase composition of silica fume?portland cement systems formed under hydrothermal curing evaluated by FTIR, XRD, and TGA. Materials. Vol. 14, No. 11, Hal. 2786. doi.org/10.3390/ma14112786
Liang. G, Dayou Ni, Haoxin Li, Biqin Dong, Zhenghong Yang. 2021. Synergistic effect of EVA, TEA and C-S-Hs-PCE on the hydration process and mechanical properties of Portland cement paste at early age. Construction and Building Materials Volume 272, 22 February 2021, 12189. https://doi.org/10.1016/j.conbuildmat.2020.121891
Xin Liu, Pan Feng , in Chen, Qi Liu, Xiaohan Yu, Yuxi Cai, Hong Zhu, Longbang Qing Jinxiang Hong. 2024. A critical review on the interaction between calcium silicate hydrate (C-S-H) and different ions. Construction and Building Materials Volume 413, 26 January 2024, 134931. https://doi.org/10.1016/j.conbuildmat.2024.134931
McDonald, L. J., Carballo-Meilan, M. A., Chacartegui, R., dan Afzal, W. 2022. The physicochemical properties of Portland cement blended with calcium carbonate with different morphologies as a supplementary cementitious material. Journal of Cleaner Production. Vol. 3, No.338, Hal. 130. doi.org/10.1016/j.jclepro.2021.130309
Meftah, N., dan Mahboub, M. S. 2020. Spectroscopic characterizations of sand dunes minerals of El-Oued (Northeast Algerian Sahara) by FTIR, XRF and XRD analyses. Silicon. Vol. 12, No. 1, Hal. 147-153. doi.org/10.1007/s12633-019-00109-5
M. H. N. Yio Y. W. Ho F. Abdul Wahid H. S. Wong N. R. Buenfeld, 2022. Analysis of cement paste and aggregate content of concrete using micro X-ray fluorescence. Magazine of Concrete Research Volume 74 Issue 17, September, 2022, pp. 889-904. https://doi.org/10.1680/jmacr.21.00094
Noa, P. J. R. O., Ribeiro, M. C. S., Ferreira, A. J. M., dan Marques, A. T. 2004. Mechanical characterization of lightweight polymer mortar modified with cork granulates. Composites science and technology. Vol. 64, No. 13-14, Hal. 2197-2205. doi.org/10.1016/j.compscitech.2004.03.006
Marija Nedeljkovic. Nikola Tos?ic. Patrick Holthuizen. Fernando Franc de Mendonc Filho, . Oguzhan Copuroglu Erik Schlangen, Sonja Fennis. 2023. Non-destructive screening methodology based on handheld XRF for the classification of concrete: cement type-driven separation. Materials and Structures (2023) 56:54 https://doi.org/10.1617/s11527-023-02147-3
Ohama, Y. 1995. Handbook of Polymer-Modified Concerete and Mortars: Properties and Process Technology. New Jersey: Noyes Publications.
Popova, A., Geoffroy, G., Renou?Gonnord, M. F., Faucon, P., dan Gartner, E. 2004. Interactions between polymeric dispersants and calcium silicate hydrates. Journal of the American Ceramic Society. Vol. 83, No. 10, Hal. 2556-2560. doi.org/10.1111/j.1151-2916.2000.tb01590.x
Prabha D. V. M., dan George, S. Shear Behaviour of Reinforced Concrete Using PET Bottle Fibre. International Journal of New Technology and Research. Vol 3, No. 5, Hal. 263288.
Prasad, S. G., De, A., dan De, U. 2011. Structural and optical investigations of radiation damage in transparent PET polymer films. International Journal of Spectroscopy. Vol. 2011, No. 1, Hal. 1-7. doi:10.1155/2011/810936
Qing Liu, Renjun Liu, Qiao Wang, Rui Liang, Zongjin Li, Guoxing Sun. 2021. Cement mortar with enhanced flexural strength and durability-related properties using in situ polymerized interpenetration network. Front. Struct. Civ. Eng. 2021, 15(1): 99?108 https://doi.org/10.1007/s11709-021-0721-0
Ramli, M., Tabassi, A. A., dan Hoe, K. W. 2013. Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions. Composites Part B: Engineering. Vol. 55, No. 13, Hal. 221-233. doi.org/10.1016/j.compositesb.2013.06.022
Redondo.E.D, Patrick A. Bonnaud Tyne, Hegoi Manzano. 2022. A comprehensive review of C-S-H empirical and computational models, their applications, and practical aspects. Cement and Concrete Research 156 (2022) 106784. https://doi.org/10.1016/j.cemconres.2022.106784
R. Vandhiyan, T.J. Vijay, Manoj Kumar M. 2021. Effect of Fine Aggregate Properties on Cement Mortar Strength. Materials Today: Proceedings 37 (2021) 2019?2026. https://doi.org/10.1016/j.matpr.2020.07.498
Silva, D. A. D., Roman, H. R., dan Gleize, P. J. P. 2002. Evidences of chemical interaction between EVA and hydrating Portland cement. Cement and concrete research. Vol 32, No. 9, Hal. 1383-1390. doi.org/10.1016/S0008-8846(02)00805-0
Seyed Ali Emamian, Hamid Eskandari-Naddaf.2019. Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by ANN and GEP. Construction and Building Materials Volume 218, 10 September 2019, Pages 8-27. https://doi.org/10.1016/j.conbuildmat.2019.05.092
Se-Jin Choi, Sung-Ho Bae, Dong-Min Ji and Sung-Hoon Kim. 2022. Effects of Capsule Type on the Characteristics of Cement Mortars Containing Powder Compacted Capsules. Materials 2022, 15, 6773. https://doi.org/10.3390/ma15196773
SNI 15 7064. 2004. Semen Portland Komposssit. Jakarta: Badan Standar Nasional.
Suharto, S., Amin, M., Al Muttaqii, M., Marjunus, R., Fitri, N., dan Suhartono, S. 2021. Analysis of fine glass waste addition as a filler material for sand substitution on the properties of mortar products. Teknik. Vol. 21, No. 1, Hal. 309-315. doi.org/10.14710/teknik.v42i3.32686
Todaro. F, Andrea Petrella, Giusy Santomasi , Sabino De Gisi and MIcheleNotarnicola, 2023. Environmental Sustainable Cement Mortars Based on Polyethylene Terephthalate from Recycling Operations. Materials 2023, 16, 2111. https://doi.org/10.3390/ma16052111.
Tjokrodimuljo,k., (1996)., ?Teknologi Beton?. Nafigiri. Yogyakarta.
Smith. A. S. 2018. MORTAR PORE STRUCTURE AND ITS ROLE IN DURABILITY. 10th IMC 10th International Masonry Conference G. Milani, A. Taliercio and S. Garrity (eds.) Milan, Italy, July 9-11, 2018.
Tararushkin, E. V., Shchelokova, T. N., dan Kudryavtseva, V. D. 2020. A study of strength fluctuations of Portland cement by FTIR spectroscopy. In IOP Conference Series: Materials Science and Engineering. Vol. 919, No. 2, Hal. 022017. doi.org/10.1088/1757-899X/919/2/022017
Varas, M. J., De Buergo, M. A., dan Fort, R. 2005. Natural cement as the precursor of Portland cement: Methodology for its identification. Cement and Concrete Research. Vol. 35, No. 11, Hal. 2055-2065. doi.org/10.1016/j.cemconres.2004.10.045
Won, J. P., Jang, C. I., Lee, S. W., Lee, S. J. dan Kim, H. Y. 2010. Long-term performance of recycled PET fibre-reinforced cement composites. Construction and Building Materials. Vol. 24, No. 5, Hal. 660-665. doi.org/10.1016/j.conbuildmat.2009.11.003
Wahab.S.A.A, Hilal Al-Dhamri, Ganesh Ram & Vishnu P. Chatterjee. , 2020. An overview of alternative raw materials used in cement and clinker manufacturing. Taylor &Francis. INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING 2021, VOL. 14, NO. 4, 743?760 https://doi.org/10.1080/19397038.2020.1822949
Xijun Zhang, Mingrui Du, Hongyuan Fang, Mingsheng Shi, Chao Zhang, Fuming Wang. 2021. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges. Construction and Building Materials Volume 299, 13 September 2021, 124290. https://doi.org/10.1016/j.conbuildmat.2021.124290
Xudong Chen, Shengxing Wu, Jikai Zhou. 2013. Influence of porosity on compressive and tensile strength of cement mortar. Construction and Building Materials Volume 40, March 2013, Pages 869-874. https://doi.org/10.1016/j.conbuildmat.2012.11.072
Yeon, K. S., Kim, K. K., Yeon, J., dan Lee, H. J. 2019. Compressive and flexural strengths of EVA-modified mortars for 3D additive construction. Materials. Vol. 12, No. 16, Hal. 2600. doi.org/10.3390/ma12162600
Zhan, B. J., Xuan, D. X., Poon, C. S., Shi, C. J., dan Kou, S. C. 2018. Characterization of C?S?H formed in coupled CO2?water cured Portland cement pastes. Materials and Structures. Vol. 51, No. 92, Hal. 1-1.