Analisis Kerentanan Seismik pada Jembatan Beton Bertulang Eksisting dengan Kolom Pendek: Tinjauan Terkini
DOI:
https://doi.org/10.5614/jts.2025.32.1.9Keywords:
Seismic fragility analysis, existing reinforced concrete bridges, short columns, fragility curves, shear failure mechanismsAbstract
Abstrak
Struktur jembatan beton bertulang eksisting yang direncanakan berdasarkan peraturan lama umumnya belum mempertimbangkan konsep perencanaan tahan gempa dan belum mengaplikasikan detailing seismik yang memadai. Hal ini menjadi perhatian bagi jembatan eksisting dengan kolom pendek yang memiliki aspek rasio (a/h) di bawah 2.5 dan berpotensi mengalami mekanisme keruntuhan geser atau geser-lentur. Mekanisme keruntuhan tersebut mengakibatkan performa struktur jembatan akibat gempa memiliki tingkat ketidakpastian yang tinggi. Analisis kerentanan seismik pada struktur jembatan eksisting dapat dilakukan dengan mengembangkan kurva kerentanan menggunakan incremental dynamic non-linear time history analysis yang mampu menghasilkan nilai probabilitas kerusakan pada berbagai intensitas gempa. Penelitian terdahulu umumnya mengembangkan kurva kerentanan berdasarkan idealisasi perilaku sendi plastis pada kolom jembatan yang mengalami mekanisme keruntuhan lentur akibat beban gempa. Studi ini menyampaikan tinjauan terkini (state-of-the-art) yang meliputi penelitian struktur jembatan beton bertulang dengan kolom pendek, khususnya yang perilaku keruntuhannya tidak didominasi oleh mekanisme lentur. Tinjauan ini juga mengusulkan kerangka kerja untuk penilaian risiko seismik dan pengembangan kurva kerentanan yang lebih sesuai untuk struktur jembatan dengan kolom pendek. Hasil tinjauan ini dapat memberikan gambaran yang lebih jelas mengenai risiko seismik yang dihadapi oleh jembatan dengan kolom pendek, serta menunjukkan potensi penelitian lanjutan yang dapat dilakukan untuk pengembangan kurva kerentanan yang lebih akurat dan relevan.
Kata-kata Kunci: Analisis kerentanan seismik, jembatan beton bertulang eksisting, kolom pendek, kurva kerentanan, mekanisme keruntuhan geser
Abstract
Existing reinforced concrete bridge structures designed based on older regulations often do not consider seismic design concepts and lack adequate seismic detailing. This issue is particularly concerning for existing bridges with short columns and aspect ratio (a/h) below 2.5, which has the potential of shear or flexural-shear failure mechanisms. These failure mechanisms result in a high level of uncertainty in the seismic performance of bridge structures.Seismic fragility analysis of existing bridge structures can be performed by developing fragility curves using the incremental dynamic non-linear time history analysis method, which is capable of providing damage probability for various levels of seismic intensity. Previous studies typically developed fragility curves based on idealized plastic hinge behavior in bridge columns subjected to flexural failure mechanisms.This study presents a state-of-the-art review of reinforced concrete bridge structures with short columns, especially those whose failure behavior are not dominated by flexure mechanism. This review also proposes a framework for seismic risk assessment and for the development of more suitable fragility curves for bridge structures with short columns.The findings of this study can provide an understanding of the seismic risk in bridges with short columns, while also highlighting the potential for future research to develop more accurate and relevant fragility curves.
Keywords: Seismic fragility analysis, existing reinforced concrete bridges, short columns, fragility curves, shear failure mechanisms
References
American Association of State Highway and Transportation Officials (AASHTO). 2020. LRFD Bridge Design Specifications.
American Society of Civil Engineers (ASCE). 2017. ASCE/SEI, 41-17, Seismic Evaluation and Retrofit of Existing Buildings.
Buckle, Ian and Hwang, SJ. Bridge Performance in the 921 Earthquake Chi-Chi Taiwan, Proceedings of the 15th US-Japan Bridge Engineering Workshop, Tsukuba, Japan, November 1999.
Cripstyani, M., Monteiro, R., Perdomo, C., 2019. Seismic Risk Assessment For Structural Upgrading of RC Bridges In Indonesia, Proceeding of the Society for Earthquake and Civil Engineering Dynamics (SECED) Conference, London, 9-10th September 2019.
LeBorgne, M.R., Ghannoum, W.M., 2014. Calibrated analytical element for lateral-strength degradation of reinforced concrete columns, Engineering Structures 81, 35?48.
Li, Y.-A., Hwang, S.-J., 2017. Prediction of Lateral Load Displacement Curves for Reinforced Concrete Short Columns Failed in Shear, J. Struct. Eng. 143, 04016164.
Massa, R.J., Cook, W.D., Mitchell, D., 2022. Predicting the Influence of Shear on the Seismic Response of Bridge Columns, Applied Sciences 12, 10910.
Massa, R.J., Shemy, O., Cook, W.D., Mitchell, D., 2022. Shear Strength of Short Rectangular Bridge Columns, J. Bridge Eng. 27, 04021110.
Mitchell, D., Tinawi, R., Sexsmith, R.G., 1991. Performance of bridges in the 1989 Loma Prieta earthquake ? lessons for Canadian designers, Can. J. Civ. Eng. 18, 711?734.
National Center for Research on Earthquake Engineering (NCREE).2022. Reconnaissance Report on Seismic Damage Caused by Guanshan Earthquake and Chihshang Earthquake, Taiwan, 2022.
Nugroho, W.O., Sagara, A., Imran, I., 2022. The evolution of Indonesian seismic and concrete building codes: From the past to the present, Structures 41, 1092?1108.
Opabola, E.A., Mangalathu, S., 2023. Seismic fragility assessment of bridges with as-built and retrofitted splice- deficient columns, Bull Earthquake Eng 21, 583?603.
Pacific Earthquake Engineering Research Center & Applied Technology Council. 2010. PEER / ATC 72-1
Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings.
Sezen, H., Moehle, J.P., 2004. Shear Strength Model for Lightly Reinforced Concrete Columns, J. Struct. Eng.
, 1692?1703.
Setiati, N.R., Guntorojati, I., 2020. Earthquake hazard mitigation analysis of the pier 231 Harbour Road Bridge,
E3S Web Conf. 156, 05001.
Silitonga, D.R., Imran, I., 2019. Penilaian Kerentanan Seismik pada Jembatan Box Girder Beton Prategang Menerus Bentang Majemuk Eksisting melalui Pengembangan Kurva Fragilitas Analitik, Jurnal Teknik Sipil 26(1):47.
Simanjuntak, V.C., Imran, I., Moestopo, M., Setio, H.D., 2023. The Evolution of Seismic Design Provisions in Indonesia?s National Bridge Code, J. Eng. Technol. Sci. 54, 220614.
Simanjuntak, V.C., Imran, I., Moestopo, M., Setio, H.D., 2023. The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta), Structural Monitoring and Maintenance 10.
Simon, J., Vigh, L.G., 2016. Seismic fragility assessment of integral precast multi-span bridges in areas of moderate seismicity, Bull Earthquake Eng 14, 3125?3150.
US Department of Transportation Federal Highway Administration (FHWA). 2004. Seismic Retrofitting Manual for Highway Structures, Publication no. FHWA-HRT-05-067.
Vamvatsikos, D., Cornell, C.A., 2002. Incremental dynamic analysis, Earthq Engng Struct Dyn 31, 491?514. Wang, P.-H., Chang, K.-C., Cheng, W.-C., 2023. Deteriorated Hysteresis Behaviors of Reinforced Concrete
Bridge Columns, ACI Structural Journal 120(2).
Witarto, W., 2013. Analytical Models for Seismic Assessment of Reinforced Concrete Bridge Pier. MS Thesis, National Taiwan University.