Model Simulasi Interaksi Gelombang dan Arus di Perairan Dangkal
DOI:
https://doi.org/10.5614/jts.2003.10.3.3Keywords:
Mild-slope, Longshore, Arus, Metode.Abstract
Abstrak. Persamaan mild-slope yang diturunkan Kirby (1986) dapat diterapkan untuk simulasi transformasi gelombang dari perairan dalam menuju pantai. Pada paper ini dikembangkan model Kirby dengan memperhatikan factor arus. Pengaruh arus pada transformasi gelombang tersebut diselesaikan dengan metode selisih hingga. Berdasarkan verifikasi model numerik dengan analitik menunjukkan bahwa perbedaan kecepatan rata-rata arus longhsore kurang dari 5%, artinya model numerik ini dapat mensimulasikan arus akibat induksi gelombang dengan baik. Verifikasi model gelombang dengan hasil penelitian Johnson (1952), Wiegel (1962) dan Wei (1998) menunjukkan adanya kemiripan, sedangkan perbedaan yang ada karena pada model mempertimbangkanfaktor arus.
Abstract. Mild-slope equations have been derived by Kirby (1986) can be applied on simulation of wave transformation from deep water to coastal. This paper's developed Kirby's model with considering current factor. The effect of current on wave transformation have been modeled with finite difference methods. According to verification of numerical models and analytical model, the difference of mean longshore current velocity less than 5%, it means that this numerical model provide good simulation of current caused by wave induction. Verification of wave model on Johnson (1952), Wiegel (1962) and Wei (1998) result similarity, but there's still any difference this
model considering current factor.
References
Booij, N., 1983, "A Note on The Accuracy of The Mild Slope Equation" , Coastal Engineering, Vol. 7,pp. 191-203
Chawla, A & Kirby, J.T., 1996, "Wave Transformation Over a Submerged Shoal" , CACR-96-03, Dept. Civil Eng., Univ. of Delaware
Dalrymple, R.A., dan Kirby, J.T., 1994, "Combined Refraction-Difraction Model" , CACR-94-22, Depart. Civil Eng., Univ. of Delaware
Dean, R.G. dan R.A. Dalrymple, 1984, "Water Wave Mechanics for Engineers and Scientists" , Englewood Cliffs, Prentice Hall
Horikawa, K., 1978, "Coastal Engineering: An Introduction to Ocean Engineering" , Univ.of Tokyo Press.
Kirby, J.T. dan Dalrymple, R.A., 1983, "A Parabolic Equation For Combined Refraction-Difraction of Stokes by Mild Varying Topography" , Journal Fluid Mechanics, Vol. 136, pp. 543-566
Kirby, J.T. dan Dalrymple, R.A., 1984, "Verification of A Parabolic Equation for Propagation of Weakly Non-Linear Waves" , Coastal Engineering, 8, 219-232
Kirby, J.T. dan Dalrymple, R.A., 1986, "An Approximate Model For Nonlinear Dispersion In Monocromatic Wave Propagation Models" , Coastal Engineering., Vol. 9, pp. 545-561
Muir, A.M. & Flemming, C.A., 1969, "Coastal Hydraulics" , The Macmillan Press ltd.
Mei, C. C., 1989, "The Applied Dynamics of Ocean Surface Waves" , World Scientific U. S. Army Coastal Engineering Research Centre, 1984, "Shore Protection Manual" , Volume I
Wei, G. & Kirby, J.T., 1998, "Simulation of Water Waves by Boussinesq Models" , CACR-98-02, Dept. Civil Eng., Univ. of Delaware.