Pemodelan Retak pada Struktur Beton Bertulang
DOI:
https://doi.org/10.5614/jts.2010.17.2.3Keywords:
Discrete crack, Smeared crack, Finite element, Respon struktur, Pola retak, Pemisahan titik nodal, Perubahan topologi.Abstract
Abstrak. Paper ini menyajikan pemodelan retak pada struktur beton bertulang dengan menggunakan nonlinear finite element. Pemodelan retak yang digunakan dalam studi ini adalah discrete crack untuk mensimulasikan diskontinuitas regangan. Discrete crack dimasukkan ke dalam struktur ketika tegangan utama tarik pada titik nodal telah mencapai kuat tarik beton. Penerapan discrete crack ini hanya dilakukan jika hasil kombinasi tegangan didominasi oleh tegangan normal tarik. Meskipun demikian, jika tegangan utama tarik pada Gauss point telah melampaui tegangan tarik beton, retak diperlakukan sebagai retak tersebar dengan merubah perilaku material dari isotropik menjadi orthotropik. Untuk menggambarkan arah dan pola retak retak yang benar, pemasukan discrete crack ke dalam struktur tidak hanya dilakukan dengan melakukan pemisahan titik nodal yang tegangannya telah mencapai kuat tarik beton, tapi juga merotasi retak ke arah tegak lurus terhadap arah tegangan utama tarik dan menggeser titik nodal di ujung retak sejauh perambatan retaknya. Beberapa benda uji dengan kasus yang berbeda yaitu Beam J4 (Burns and Siess 1962), Beam OA (Bresler dan Scordelis 1963) dan Beam A4 (Ahmad et al. 1986). dianalisis untuk memvalidasi model. Model ini bukan hanya mampu menunjukkan bahwa respon struktur dari model sangat mendekati hasil pengujian eksperimental, tapi juga dapat menggambarkan pola retak yang benar.Abstract. This paper presents a crack model for reinforced concrete structures by using nonlinear finite element method. The crack model used in this study is a discrete crack to simulate strain discontinuity, Discrete cracks are inserted into the structure when the principal tensile stress of nodes have reached the tensile strength of concrete. Insertion of discrete cracks into the structure is only performed when resulting stress combinations are dominated by normal tension stress. Nevertheless, if the principle tension stress on a Gauss point has exceeded the tensile strength of concrete, the craks is treated as a smeared crack with a change in material behavior from one isotropic to another orthotropic character. To find the appropriate direction and pattern of cracks, insertion of discrete cracks into the structure is not only performed by node separation at nodes which have reached the tensile strength of concrete, but also by rotation of the crack perpendicular to the direction of the principle tension stress and dragging the crack-tip node as far as the crack has propagated. Some specimens with different cases e.i Beam J4 (Burns and Siess 1962), Beam OA (Bresler dan Scordelis 1963) and Beam A4 (Ahmad et al. 1986) were analyzed to validate the model. The model is not only able to shows that the structure response is very close to the experimental test, but also can describe the proper crack pattern.
References
Ahmad, S.H., Khaloo, A.R. and Proveda, A., 1986, Shear Capacity of Reinforced High-Strength Concrete Beams, ACI Journal, March-April, 297-305.
Arafa, M. and Mehlhorn, G., 1998, A Modified Discrete Model in the Nonlinear Finite Element Analysis of Prestressed and Reinforced Concrete Structures, 2nd International PhD Symposium in Civil Engineering, Budapest.
Bresler, B. and Scordelis, A.C., 1963, Shear Strength of Reinforced Concrete Beams. Journal of ACI, Vol. 60, No. 1, pp. 51-72.
Chung, W., and Ahmad, S.H., 1994, Model for Shear Critical High-Strength Concrete Beams, ACI Journal, Vol. 91, January-February, 31-40.
Einsfeld, R.A., Martha, L.F. and Bittencourt, T.N. 2000, Combination of Smeared and Discrete Crack Approaches with The Use of Interface Elements, European Congress on Computational Methods in Applied Sciences and Engineering, Eccomas 2000, Barcelona 11-14 September.
Grootenboer, Johannes, H., 1979, Finite Element Analysis of Two Dimensional Reinforced Concrete Structures, Taking Account of Nonlinear Physical Behaviour and The Development of Discrete Crack, PhD. Dissertation, civiel ingenieur geboren te Amsterdam, Delftse Universitaire Pers.
Huang, Z. and Platten, A., 1997, Nonlinear Finite Element Analysis of Planar Reinforced Concrete Members Subjected to Fires, ACI Structural Journal, May-June, 272-282.
Kotsovos, M.D., 1984, Behavior of Reinforced Concrete Beams with a Shear Span to Depth Ratio Between 1.0 and 2.5, ACI Journal, May- June, 279-286.
Kwak, H.G. and Filippou, F.C., 1990, Finite Element Analysis of Reinforced Concrete Structures Under Monotonic Loads, California: Report No. UBC/SEMM-90/14, Departement of Civil Engineering, University of California, Berkeley.
Lowes, L.N., 1999, Finite Element Modeling of Reinforced Concrete Beam-Column Bridge Connections, Berkekey: PhD. Dissertation, University of California, 40.
Ngo, D. and Scordelis, C. 1967, Finite Element Analysis of Reinforced Concrete Beams, ACI Journal, March, 152-163.
Nilson, A.H., 1968, Nonlinear Analysis of Reinforced Concrete By The Finite Element Method, ACI Journal, September, 757-766.
Rots, J.G., 1988, Computational Modeling of Concrete Fracture, PhD. Dissertation, Technische Universiteit Delf.
Vecchio, F.J., 1989, Nonlinear Finite Element Analysis of Reinforced Concrete Membranes, ACI Structural Journal, January-February, 26-34.
Vecchio, F.J. and Collins, M.P., 1986, The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI Journal, Vol. 83, March-April, 219-231.
Vecchio, F.J. and Collins, M.P., 1988, Predicting the Response of Reinforced Concrete Beams Subjected to Shear Using Modified Compression Field Theory, ACI Structural Journal, Vol. 85, May-June, 258-268.
Vecchio, Frank, J., 1989, Nonlinear Finite Element Analysis of Reinforced Concrete Membranes, ACI Structural Journal, January-February.
Burns, N.H. and Siess, C.P. (1962). "Load-Deformation Characteristics of Beam-Column Connections in Reinforced Concrete". Urbana: Civil Engineering Studies, SRS No. 234, University of Illinois.
Yao, B. and Murray, D.W., 1995, Study of Concrete Cracking and Bond Using a Distributed Discrete Crack Finite Element (FE) Model, ACI Material Journal, January-February, 93-104.



