The Use of Naive Bayes Classifier in Sentiment Analysis at Indonesia's Super Priority Tourism Destinations Based on User Reviews
Keywords:
sociotechnology, sentiment analysis, super priority tourism destination, tourism evaluation, big dataAbstract
This study aims to develop a digital technology-based evaluation platform to support Indonesia’s super priority tourism destination (DPSP) program. The platform utilizes tourist review data obtained from Google Maps, which is processed using sentiment analysis based on the Naïve Bayes algorithm and scraping techniques. By collecting and analyzing data in real time, this research provides accurate and relevant information about tourist opinions regarding tourism destinations. The implementation of this system is expected to enhance the effectiveness of tourism destination evaluations and support data-driven decision-making. The test result shows a model accuracy of 75%, with tourist reviews classified into positive, negative, and neutral classes. Further development is recommended to add more data sources and improve model accuracy.
References
Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. In Journal of Artificial Intelligence Research (Vol. 16).
Farisi, A. A., Sibaroni, Y., & Faraby, S. Al. (2019). Sentiment analysis on hotel reviews using Multinomial Naïve Bayes classifier. Journal of Physics: Conference Series, 1192(1). https://doi.org/10.1088/1742-6596/1192/1/012024
Agama, I., Negeri, K., Fakultas, A., Keagamaan, I. S., Benony, Y., Mahasiswa, W., Pariwisata, P., & Ambon, I. (2020). NOUMENA 47 | P a g e Analisis Eksistensi Pariwisata Indonesia di Tengah Situasi Pandemi Corona Virus Disease (Covid19). In NOUMENA: Jurnal Ilmu Sosial Keagamaan I: Vol. I (Issue 1). https://travel.detik.com/travel-
Mahesh, B. (2020). Machine Learning Algorithms - A Review. International Journal of Science and Research (IJSR), 9(1), 381–386. https://doi.org/10.21275/art20203995
Maulana, B. A., Fahmi, M. J., Imran, A. M., & Hidayati, N. (2024). Sentiment Analysis of Pluang Application Using Naive Bayes Algorithm and Support Vector Machine (SVM). MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 375–384. https://doi.org/10.57152/malcom.v4i2.1206
Singh, A. K., & Shashi, M. (2019). Vectorization of Text Documents for Identifying Unifiable News Articles. In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 10, Issue 7). www.ijacsa.thesai.org
Travel & Tourism Development Index 2024 M A Y 2 0 2 4. (2024).
Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731–5780. https://doi.org/10.1007/s10462-022-10144-1
Wongkar, M., & Angdresey, A. (n.d.). Sentiment Analysis Using Naive Bayes Algorithm Of The Data Crawler : Twitter.
Local Consumer Review Survey 2024: Trends, Behaviors, and Platforms Explored https://www.brightlocal.com/research/local-consumer-review-survey/.
Al-Bakri, N. F., Yonan, J. F., Sadiq, A. T., & Abid, A. S. (2022). Tourism companies assessment via social media using sentiment analysis. Baghdad Science Journal, 19(2), 422–429. https://doi.org/10.21123/BSJ.2022.19.2.0422
Rizal, A. A., Nugraha, G. S., Putra, R. A., & Anggraeni, D. P. (2024). Twitter Sentiment Analysis in Tourism with Polynomial Naïve Bayes Classifier. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 5(4), 343–353. https://doi.org/10.35746/jtim.v5i4.478
Widya Utami, N., Purnama, N., Made, I., & Prayoga, A. (n.d.). Sentiment Analysis System Of Bali Tourism Using Naive Bayes Algorithm And Web Framework-Nengah Widya Utami et.al Sentiment Analysis System Of Bali Tourism Using Naive Bayes Algorithm And Web Framework. Informatika Dan Sains, 14, 2024. https://doi.org/10.54209/infosains.v14i03
Wiranti, Y., & Ramadhan Nasution, Y. (2024). Sentiment Analysis of Reviews of Tourist Attractions in the Lake Toba Area Using the Naïve Bayes Method. Architecture and High Performance Computing, 6(3). https://doi.org/10.47709/cnapc.v6i3.4287
Published
Issue
Section
Copyright (c) 2025 Ery Atmadji, Yuyun Wabula, Hayuning Titi Karsanti, Kristopher Kristopher

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.