Greenhouse Gas Emission from Galuga Landfill and Financial Feasibility of RDF Technology
Keywords:
emissions, landfill, RDF, wasteAbstract
Many cities are confronting significant challenges due to the rising volume of waste. This surge in waste generation not only risks overcapacity but also contributes to increased greenhouse gas (GHG) emissions. This study aims to estimate the amount of waste directed to the Galuga landfill, evaluate the potential GHG emissions resulting from the landfill, and analyze the financial viability of implementing Refuse Derived
Fuel (RDF) technology, which has the potential to reduce waste volumes. This research employs three key methods: 1) Multiple Linear Regression (MLR) to identify the factors that influence waste generation, 2) the IPCC guidelines for National Greenhouse Gas Inventories Volume 5 to estimate potential greenhouse gas emissions, and 3) a financial feasibility analysis to evaluate the viability of implementing RDF technology.
The results show that the volume of waste directed to the Galuga landfill in 2022 was 195,787.10 tons, with a projected increase of 2.43% by 2030, bringing the total to 200,544.26 tons. The potential greenhouse gas (GHG) emissions from waste generated at the Galuga landfill are estimated to be 109 kt CO2e in 2030, reflecting a decrease of 29.48% compared to 2022. Furthermore, the plan to implement RDF technology
is deemed financially viable, as it fulfills the necessary criteria for Net Present Value (NPV), Internal Rate of Return (IRR), Benefit-Cost (B/C) Ratio, and Payback Period. Therefore, the governments may introduce various incentives to promote the adoption of RDF technology, stricter waste segregation is essential for better RDF quality, and attracting private investment through PPPs can enhance RDF infrastructure.
References
Al-Salem, S. M., Al-Nasser, A., & Al-Dhafeeri, A. T. (2018). Multi-variable regression analysis for the solid waste generation in the State of Kuwait. Process Safety and Environmental Protection, 119, 172–180. https://doi.org/10.1016/j.psep.2018.07.017.
Annepu, R.K. (2012) Sustainable Solid Waste Management in India. Waste-to-Energy Research and Technology Council (WTERT), Columbia University, New York.
Araiza-Aguilar, J. A., Rojas-Valencia, M. N., & Aguilar-Vera, R. A. (2020). Forecast generation model of municipal solid waste using multiple linear regression. Global Journal of Environmental Science and Management, 6(1). 1–14. https://doi.org/10.22034/gjesm.2020.01.01.
Artiningrum, T. (2018). Potensi Emisi Metana (CH4) dari Timbulan Sampah Kota Bandung. Geoplanart, 1(1). 36–44.
Azadi, S., & Karimi-Jashni, A. (2016). Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran. Waste Management, 48, 14–23. https://doi.org/10.1016/j.wasman.2015.09.034.
Cheng, J., Shi, F., Yi, J., & Fu, H. (2020). Analysis of the factors that affect the production of municipal solid waste in China. Journal of Cleaner Production, 259, 120-808. https://doi.org/10.1016/j.jclepro.2020.120808.
Du, M., Peng, C., Wang, X., Chen, H., Wang, M., & Zhu, Q. (2017). Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renewable and Sustainable Energy Reviews, 272–279. https://doi.org/10.1016/j.rser.2017.04.082.
Ercolano, S., Lucio Gaeta, G. L., Ghinoi, S., & Silvestri, F. (2018). Kuznets curve in municipal solid waste production: An empirical analysis based on municipal-level panel data from the Lombardy region (Italy). Ecological Indicators, 93, 397-403. https://doi.org/10.1016/j.ecolind.2018.05.021.
Firdaus M. (2020). Aplikasi Ekonometrika dengan E-Views, Stata, dan R. Bogor: IPB Press.
Gittinger JP. (1982). Economic Analysis of Agricultural Projects. Ed ke-2. McEuen JE, editor. Marryland: The Johns Hopkins University Press.
Götze U, Northcott D, Schuster P. (2008). Investment Appraisal. Berlin, Heidelberg: Springer Berlin Heidelberg.
Han, Z., Ye, C., Zhang, Y., Dan, Z., Zou, Z., Liu, D., & Shi, G. (2019). Characteristics and management modes of domestic waste in rural areas of developing countries: a case study of China. Environmental Science and Pollution Research, 26 (9), 8485–8501. https://doi.org/10.1007/s11356-019-04289-w.
[IPCC] Intergovernmental Panel on Climate Change. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipccnggip.iges.or.jp/public/2006gl/vol5.html.
[IPCC] Intergovernmental Panel on Climate Change. (2022). AR6 Climate Change 2022: https://www.ipcc.ch/report/ar6/wg2/.
Juanda B. (2009). Ekonometrika Permodelan dan Pendugaan. Bogor: IPB Press.
[KLHK] Kementerian Lingkungan Hidup dan Kehutanan. (2020). Laporan Inventarisasi Gas Rumah Kaca (GRK) dan Monitoring, Pelaporan, Verifikasi (MPV). Jakarta: Kementerian Lingkungan Hidup.
[KLHK] Kementerian Lingkungan Hidup dan Kehutanan. (2021). Laporan Inventarisasi Gas Rumah Kaca (GRK) dan Monitoring, Pelaporan, Verifikasi (MPV). Jakarta: Kementerian Lingkungan Hidup.
Kolekar, K. A., Hazra, T., & Chakrabarty, S. N. (2016). A Review on Prediction of Municipal Solid Waste Generation Models. Procedia Environmental Sciences, 35, 238–244. https://doi.org/10.1016/j.proenv.2016.07.087.
Kumar, A., & Samadder, S. R. (2017). An empirical model for prediction of household solid waste generation rate – A case study of Dhanbad, India. Waste Management, 68, 3–15. https://doi.org/10.1016/j.wasman.2017.07.034.
Liu, C., & Wu, X. W. (2011). Factors influencing municipal solid waste generation in China: A multiple statistical analysis study. Waste Management and Research, 29(4), 371–378. https://doi.org/10.1177/0734242X10380114.
Liu, J., Li, Q., Gu, W., & Wang, C. (2019). The impact of consumption patterns on the generation of municipal solid waste in China: Evidences from provincial data. International Journal of Environmental Research and Public Health, 16(10), 1–19. https://doi.org/10.3390/ijerph16101717.
Mazzanti, M., Montini, A., & Zoboli, R. (2008). Municipal waste generation and socioeconomic drivers: Evidence from comparing Northern and Southern Italy. Journal of Environment and Development, 17(1), 51–69. https://doi.org/10.1177/1070496507312575.
Metz, B., & Kok, M. (2008). Integrating development and climate policies. Climate Policy, 8(2), 99–102. https://doi.org/10.3763/cpol.2008.0523.
Mohan, S., & Joseph, C. P. (2021). Potential hazards due to municipal solid waste open dumping in India. Journal of the Indian Institute of Science, 101(4), 523–536. https://doi.org/10.1007/s41745-021-00242-4.
Nasir, N., Zulkipli, F., Faizal, N. F. S. M., Ghadafy, N. M., & Azman, N. H. (2021). Forecasting solid waste generation in Negeri Sembilan and Melaka. Journal of Quality Measurement and Analysis JQMA, 17(1), 61–77.
[Permendagri] Peraturan Menteri Dalam Negeri Republik Indonesia Nomor 7 Tahun 2021 Tentang Tata Cara Pehitungan Tarif Retribusi dalam Penyelenggaraan Penanganan Sampah. 2021.
Prabowo, S., Pranoto, & Budiastuti, S. (2019). Estimasi emisi gas rumah kaca yang dihasilkan dari tempat pemrosesan akhir (TPA) di Jawa Tengah. Bioeksperimen, 5(1), 21–23. https://doi.org/10.23917/bioeksperimen.v5i1.2795.
Prihartanto, P., Trihadiningrum, Y., Kholiq, M. A., Bagastyo, A. Y., Warmadewanthi, I., & Radityaningrum, A. D. (2022). Energy source from landfill mined material in Bantargebang integrated solid waste treatment facility, Bekasi, Indonesia. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4293050.
[SIPSN] Sistem Informasi Pengelolaan Sampah Nasional. (2021). Data Pengelolaan Sampah: Komposisi Sampah. [internet]. Tersedia pada: http://www.sipsn.menlhk.go.id/.
[SIPSN] Sistem Informasi Pengelolaan Sampah Nasional. (2023). Data Pengelolaan Sampah: Komposisi Sampah. [internet]. Tersedia pada: http://www.sipsn.menlhk.go.id/.
Sobana DH. (2018). Studi Kelayakan Bisnis. Bandung (ID): Pustaka Setia.
Wahyudi, J. (2019). Emisi gas rumah kaca (GRK) Dari pembakaran terbuka sampah rumah tangga menggunakan model IPCC. Jurnal Litbang: Media Informasi Penelitian, Pengembangan Dan IPTEK, 15(1), 65–76. https://doi.org/10.33658/jl.v15i1.132.
Winahyu, D., Hartoyo, S., & Syaukat, Y. (2019). Strategi pengelolaan sampah pada tempat pembuangan akhir Bantargebang, Bekasi. Jurnal Manajemen Pembangunan Daerah, 5(2), 1–17. https://doi.org/10.29244/jurnal_mpd.v5i2.24626.
Zahrina, I., & Yenie, E. (2021). Penerapan teknologi windrow composting bagi masyarakat sekitar TPA Muara Fajar Pekanbaru. Dharmakarya, 10(2), 174. https://doi.org/10.24198/dharmakarya.v10i2.33178.
Published
Issue
Section
Copyright (c) 2025 Nuraulia Asyifa, Pini Wijayanti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





