FAKTOR-FAKTOR SOSIAL EKONOMI PENENTU ADOPSI LONG TERM EVOLUTION (LTE) DI INDONESIA

https://doi.org/10.5614/sostek.itbj.2019.18.1.3

Authors

  • Kasmad Ariansyah Departemen Ilmu Ekonomi, Fakultas Ekonomi dan Bisnis, Universitas Indonesia
  • Chaikal Nuryakin Departemen Ilmu Ekonomi, Fakultas Ekonomi dan Bisnis, Universitas Indonesia

Keywords:

sosial ekonomi, adopsi LTE, regresi logistik

Abstract

Penelitian-penelitian sebelumnya telah membuktikan dampak positif adopsi layanan pitalebar terhadap perubahan sosial dan pertumbuhan ekonomi. Hal tersebut mendorong pemerintah Indonesia untuk menyusun dan menetapkan rencana pitalebar Indonesia (RPI) yang berisi panduan dan arah pembangunan pitalebar nasional. Namun demikian, upaya-upaya yang dilakukan lebih banyak kepada strategi pencapaian dari sisi suplai, sedangkan upaya untuk meningkatkan dan memetakan permintaan kurang mendapat perhatian. Oleh sebab itu, penelitian ini bertujuan untuk mengetahui faktor-faktor sosial ekonomi yang dapat menjelaskan adopsi LTE, sebagai salah satu teknologi pitalebar, di Indonesia. Penelitian ini juga menyertakan variabel konsumsi paket data dan tipe berlangganan sebagai variabel penjelas ke dalam model yang diusulkan. Pengumpulan data dilakukan melalui survei yang dilaksanakan Pusat Penelitian dan Pengembangan Sumber Daya, Perangkat, dan Penyelanggaraan Pos dan Informatika, Kementerian Komunikasi dan Informatika pada tahun 2016. Kami menggunakan analisis statistik deskriptif untuk menggambarkan profil responden dan analisis logistik biner untuk menguji signifikansi statistik perbedaan sosial ekonomi dalam kaitannya dengan adopsi layanan berbasis teknologi LTE di Indonesia. Hasil analisis menunjukkan jenis kelamin, tingkat pendidikan, tingkat perekonomian, dan tipe berlangganan memiliki peran penting dalam menjelaskan adopsi layanan pitalebar bergerak, khususnya adopsi layanan berbasis teknologi LTE.

 

 

Some previous studies have found that there are positive impacts of the broadband adoption on social change and economic growth. Those findings have prompted the Indonesian government to develop and stipulate the Indonesian Broadband Plan which contains guidelines and directions for national broadband development. However, the efforts are more devoted to the achievement strategy of supply side. Meanwhile, demand side gets insufficient attention. This paper seeks to fulfill this gap by investigating the socioeconomic attributes that explain the LTE adoption, as one of the broadband technologies, among Indonesian society. We also include monthly data consumption and subscription type as explanatory variables to the proposed model. Data collection was carried out through a survey by the Research and Development Center for Post and Informatics, Ministry of Communication and Information Technology in 2016. We utilize descriptive statistical analysis to describe respondents' profile, and binary logistic regression analysis to examine the statistical significance of independent variables against the dependent variable. The study confirmed that gender, education, economic level, and subscription type have a significant role in explaining the adoption of the new emerging mobile broadband service, especially the adoption of LTE based service in Indonesia.

References

Anderson, B., Gale, C., Jones, M. L. R., & McWilliam, A. (2002). Domesticating Broadband " What Consumers Really Do with Flat-Rate, Always-On and Fast Internet Access. BT Technology Journal, 20(1), 103-114. https://doi.org/10.1023/A:1014578227619

Bardesi, H. J. (2016). Factors Affecting Demand For Internet Access In Saudi Arabia. Eurasian Journal of Business and Management, 4(3), 29-38. https://doi.org/10.15604/ejbm.2016.04.03.003

Chinn, M. D., & Fairlie, R. W. (2007). The Determinants of the Global Digital Divide: A Cross-Country Analysis of Computer and Internet Penetration. Oxford Economic Papers, 59(1), 16-44. Diambil dari JSTOR.

Choudrie, J., & Dwivedi, Y. K. (2006). Examining the Socio-Economic Determinants of Broadband Adopters and Non-Adopters in the United Kingdom. Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06), 85a-85a. https://doi.org/10.1109/HICSS.2006.169

Dwivedi, Y. K., & Lal, B. (2007). Socio" economic determinants of broadband adoption. Industrial Management & Data Systems, 107(5), 654-671. https://doi.org/10.1108/02635570710750417

Ericsson. (2013a). Analyzing the effect of broadband on GDP. Diambil 1 Agustus 2017, dari https://www.ericsson.com/assets/local/news/2013/9/socioeconomic-effect-of-broadband-speed.pdf

Ericsson. (2013b). Measuring the impact of broadband on income. Diambil 1 Agustus 2017, dari https://www.ericsson.com/assets/local/news/2013/9/impact-of-broadband-speed-on-household-income.pdf

GSMA. (2016a). Connected Society: Consumer barriers to mobile internet adoption in Africa. Diambil 17 Mei 2017, dari https://www.gsmaintelligence.com/research/?file=8170bf058e42cdb8c186c6c75fb2b30e&download

GSMA. (2016b, Juni). Consumer barriers to mobile internet adoption in Asia. Diambil 22 April 2017, dari http://www.gsma.com/mobilefordevelopment/wp-content/uploads/2016/06/Consumer-Barriers-to-Mobile-Internet-Adoption-in-Asia.pdf

Harrell, F. E., Lee, K. L., & Mark, D. B. (1996). Multivariable Prognostic Models: Issues In Developing Models, Evaluating Assumptions And Adequacy, And Measuring And Reducing Errors. Statistics in Medicine, 15(4), 361-387. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4

Jain, P., & Rekha. (2017). Impact of Demographic Factors:Technology Adoption in Agriculure. SCMS Journal of Indian Management, 93-102.

Janssen, F. (2006). Do Managers' Characteristics Influence the Employment Growth of SMEs? Journal of Small Business & Entrepreneurship, 19(3), 293-315. https://doi.org/10.1080/08276331.2006.10593372

Lee, S., & Brown, J. (2008). The Diffusion of Fixed Broadband: An Empirical Analysis (SSRN Scholarly Paper No. ID 1285802). Diambil dari Social Science Research Network website: https://papers.ssrn.com/abstract=1285802

Lee, S., & Marcu, M. (2007). Fixed and Mobile Broadband Deployment: An Empirical Analysis of Adoption Factors (SSRN Scholarly Paper No. ID 2103930). Diambil dari Social Science Research Network website: https://papers.ssrn.com/abstract=2103930

Long, J. . (1997). Regression models for categorical and limited depen- dent variables. Thousand Oaks: CA Sage.

Manzoor, A. (2014). Investigating the Factors Affecting Residential Consumer Adoption of Broadband in India. SAGE Open, 4(4), 2158244014556998. https://doi.org/10.1177/2158244014556998

Marcus, J. S., Burns, J., Jervis, V., Wahlen, R., Carter, K. R., Philbeck, I., & Vary, P. (2010). PPDR Spectrum Harmonisation in Germany, Europe and Globally. Bad Honnef: wik consultant.

Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54(1), 17-24.

Mirza, F., & Beltran, F. (2013). Drivers and Barriers to the Uptake of a FTTH Ultra-Fast Broadband in New Zealand (SSRN Scholarly Paper No. ID 2241514). Diambil dari Social Science Research Network website: https://papers.ssrn.com/abstract=2241514

Mittal, S., & Mehar, M. (2016). Socio-economic Factors Affecting Adoption of Modern Information and Communication Technology by Farmers in India: Analysis Using Multivariate Probit Model. The Journal of Agricultural Education and Extension, 22(2), 199-212. https://doi.org/10.1080/1389224X.2014.997255

OpenSignal.com. (2017, Desember). State of Mobile Networks: Indonesia (December 2017). Diambil dari https://opensignal.com/reports/2017/12/indonesia/state-of-the-mobile-network

Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49(12), 1373-1379. https://doi.org/10.1016/S0895-4356(96)00236-3

Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An Introduction to Logistic Regression Analysis and Reporting. The Journal of Educational Research, 96(1), 3-14. https://doi.org/10.1080/00220670209598786

Peraturan Presiden Nomor 96 Tahun 2014. Rencana Pitalebar Indonesia 2014-2019. , Pub. L. No. Lembaran Negara Republik Indonesia Tahun 2014 Nomor 220 (2014).

Santosham, S., & Lindsey, D. (2015). Bridging the gender gap: Mobile access and usage in low- and middle-income countries. Diambil dari GSMA website: https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2016/02/GSM0001_03232015_GSMAReport_NEWGRAYS-Web.pdf

Srinuan, C., & Bohlin, E. (2013). Analysis of fixed broadband access and use in Thailand: Drivers and barriers. Telecommunications Policy, 37(8), 615-625. https://doi.org/10.1016/j.telpol.2013.03.006

Whitacre, B., Gallardo, R., & Strover, S. (2014). Broadband׳s contribution to economic growth in rural areas: Moving towards a causal relationship. Telecommunications Policy, 38(11), 1011-1023. https://doi.org/10.1016/j.telpol.2014.05.005

World Bank. (2016). Fixed broadband subscriptions. Diambil 17 Mei 2017, dari http://data.worldbank.org/indicator/IT.NET.BBND?locations=ID

Published

2019-05-01

Issue

Section

Articles