A Comparison of Alkali and Biological Pretreatment Methods in Napier Grass (Pennisetum purpureum Scumach.) for Reducing Lignin Content in the Bioethanol Production Process

Authors

  • T Taufikurahman Department of Bioengineering, School of Life Sciences and Technology, Bandung Institute of Technology
  • Wendo Obert Delimanto Department of Bioengineering, School of Life Sciences and Technology, Bandung Institute of Technology

DOI:

https://doi.org/10.5614/3bio.2020.2.1.5

Keywords:

Lignin degradation, Aspergillus niger, Phanerochaete chrysosporium, alkali (Ca(OH)2), Napier grass

Abstract

Napier grass is one of lignocellulosic plants that has the potential to be converted as bioethanol due to high productivity and relatively fast harvesting time. However, the problems of processing lignocellulosic plants into bioethanol are the high lignin content and the different lignin structure of each plant. Lignin can inhibit biological agents in accessing cellulose and hemicellulose. Therefore, it is necessary to select and optimize the pretreatment process with the aim of degrading lignin and maintaining the value of the cellulose. This study was conducted to compare the effectiveness of two different pretreatments (biological and alkaline) in degrading lignin. For the alkali pretreatment, lime (Ca(OH)2) was added to the Napier grass substrate using concentrations of 0.05, 0.1, and 0.5 grams/gram, which was then incubated at 23-25 oC each within 6, 24, and 96 hours period. For biological pretreatment, Aspergillus niger spore was used as an agent, which was incubated onto the Napier grass substrate using concentrations of 106, 107, and 108 cells/mL, an optimal temperature of 35oC and within 1, 3, 5, 7, and 9 days period. As a comparison, Phanerochaete chrysosporium was also incubated using a concentration of 106 a temperature of 35 oC within 28 days period. The extracted Napier grass was then analyzed for lignocellulose content, which included hot water soluble, Hemicellulose, cellulose, lignin, and ash, using Chesson-Datta method and reducing sugar test. Comparison of biological pretreatment between Aspergillus niger and Phanerochaete chrysosporium showed that Aspergillus niger was better at degrading lignin, with a lignin-to-cellulose ratio of 24.3%, smaller than Phanerochaete chrysosporium at 30.645%. This ratio was furthermore compared with the ratio resulting from Alkali pretreatment, which showed that the former was proven to be more optimum.

References

Nugroho, R. (2014). Kebijakan Publik di Negara-Negara Berkembang.

Syam, K. L., Farikha, J., & Fitriana, D. N. (2009). Pemanfaatan Limbah Pod Kakao Untuk Menghasilkan Bioetanol Sebagai Sumber Energi Terbarukan.

Negawo, A. T., Teshome, A., Kumar, A., Hanson, J., & Jones, C. S. (2017). Opportunities for Elephant (Pennisetum purpureum) Improvement Using Molecular Genetics. Agronomy , 7 (28). DOI: 10.3390/agronomy7020028

Isroi. (2008). Peningkatan Digestibilitas dan Perubahan Struktur Tandan Kosong Kelapa Sawit oleh Pretreatment Pleurotus floridanus dan Asam Fosfat. Disertasi, Universitas Gadjah Mada, Sekolah Pascasarjana "? Program Studi Bioteknologi, Yogyakarta.

Sewalt, V. J., Glasser, W. G., & Beauchemin, K. A. (1997). Lignin impact on fiber degradation .3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J Agric Food Chem , 5 (45), 1823-1828. DOI: 10.1021/jf9608074

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology (96), 673-686. DOI: 10.1016/j.biortech.2004.06.025

Khrishna, H. S., & Chowdary, G. V. (2000). Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. J Agric Food Chem , 5 (48), 1971-1976. DOI: 10.1021/jf991296z

Chen, S., Zhang, X., Singh, D., Yu, H., & Yang, X. (2010). Biological pretreatment of lignocellulosics: potential, progress and challenges. Biofuels , 1 (1), 177-199. DOI: 10.4155/bfs.09.13

Rahnama, N., Mamat, S., Shah, U. K., Ling, F. H., Rahman, N. A., & Ariff, A. B. (2013). Effect of Alkali Pretreatment of Rice Straw on Cellulase and Xylanase Production by Local Trichoderma harzianum SNRS3 under Solit State Fermentation. 8 (2), 2881-2896.

Kienzle, R. (1981). Acidogenic Fermentation of Lignocellulose-Acid Yield and Conversion of Components. Biotechnology and Bioengineering, , 23, 2167-2170. DOI: 10.1002/bit.260230921

Fugelsan, K. C., & Edwards, C. G. (2007). Wine Microbiology : Practical Applications and Procedures. 2, 226-236.

Zuliansah, W., & Abduh, M. Y. (2018). Pengaruh Lama Waktu Kultivasi Aspergillus niger dengan Metode Solid State Fermentation (SSF) Terhadap Kandungan Total Flavonoid dari Daun Lemon (Citrus limon. L). Institut Teknologi Bandung, Sekolah Ilmu dan Teknologi Hayati. Bandung: Repository Tugas Akhir SITH-ITB.

Ayed, L., Chammam, N., Asses, N., & Hamdi, M. (2013). Optimization of Biological Pretreatment of Green Table Olive Processing Wastewaters Using Aspergillus niger. J. Bioremed Biodeg , 5, 212. DOI: 10.4172/2155-6199.1000212

Liong, Y. Y., Halis, R., Lai, O. M., & Mohamed, R. (2012). Conversion of Lignocellulosic Biomass from Grass to Bioethanol Using Materials Pretreated with Alkali and White Rot Fungi, Phanerochaete chrysosporium. BioResources , 7 (4), 5500-5513.

Valencia, P. E., & Meitiniarti, V. I. (2017). Isolasi dan karakterisasi jamur ligninolitik serta perbandingan kemampuannya dalam biodelignifikasi. Scripta Biologica , 4 (3), 171-175. DOI: 10.20884/1.sb.2017.4.3.449

Correa, M. G., Portal, L., Moreno, P., & Tengerdy, R. P. (1999). Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresource Technology , 173-178. DOI: 10.1016/S0960-8524(98)00139-4

Pensupa, N., Jin, M., Kokolski, M., Archer, D. B., & Du, C. (2013). A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresource Technology . DOI: 10.1016/j.biortech.2013.09.061

Alessandra, B., Farias, F. C., Motter, F. A., Paula, D. H., Richard, P., Krieger, N., et al. (2014). Pectinase Activity Determination: An Early Deceleration in the Release of Reducing Sugars Throws a Spanner in the Works! 9 (10). DOI: 10.1371/journal.pone.0109529

Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., & Burns, J. C. (2008). Lime Pretreatment of Switchgrass for Bioethanol Production. ASABE Annual International Meeting. ASABE Rhode Island Convention Center.

Miller, G. L. (1959). Use of dinitro salicylic acid reagen for reagen for determination of reducing sugar. Anal. Chem (31), 426-428.

Budiyanto, M. K. (2011). Teknik Membuat Biakan Murni. Kajian Mikrobiologi Umum. Pondok Ilmu.

Yao, W., & Nokes, S. E. (2014). Phanerochaete chrysosporium pretreatment of biomass to enhance solvent production in subsequent bacterial solid-substrate cultivation. Biomass and Bioenergy (62), 100-107. DOI: 10.1016/j.biombioe.2014.01.009

Isroi, Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M. N., Lundquist, K., et al. (2011). Biological Pretreatment of Lignocellulos es with White-Rot Fungi and Its Applications : A Review. BioResources , 6 (4), 5224-5259.

Asther, M., Capdevila, C., & Corrieu, G. (1988). Control of lignin peroxidase production by Phanerochaete chrysosporium INA-12 by temperature shifting. Applied and Environmental Microbiology (54), 3194-3196. DOI: 10.1128/aem.54.12.3194-3196.1988

Alvira, P., Tomas-Pejo, E. M., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology (101), 4851-4861. DOI: 10.1016/j.biortech.2009.11.093

Yang, B., & Wyman, C. E. (2007). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Bioref , 2, 26-40. DOI: 10.1002/bbb.49

Yasuda, M., Takeo, K., Matsumoto, T., Shiragami, T., Sugamoto, K., Matshushita, Y.-i., et al. (2013). Effectiveness of Lignin-Removal in Simultaneous Saccharification and Fermentation for Ethanol Production from Napiergrass, Rice Straw, Silvergrass, and Bamboo with Different Lignin-Contents. Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization . DOI: 10.5772/54194

Minmunin, J., Limpitipanich, P., & Promwungkwa, A. (2015). Delignification of Elephant Grass for Production of Cellulosic Intermediate. Energy Procedia (79), 220-225. DOI: 10.1016/j.egypro.2015.11.468

Restiawaty, E., & Dewi, A. (2017). Comparison of Pretreatment Methods on Vetiver Leaves for Efficient Processes of Simultaneous Saccharification and Fermentation by Neurospora sp. IOP Journal of Physics: Conference Series (877). DOI: 10.1088/1742-6596/877/1/012048

Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research , 8 (48), 3713-3729. DOI: 10.1021/ie801542g

Maurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech . DOI: 10.1007/s13205-015-0279-4

Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology advances , 30 (6), 1447-1457. DOI: 10.1016/j.biotechadv.2012.03.003

Halis, R., Tan, H. R., Ashaari, Z., & Mohamed, R. (2012). Biomodification of Kenaf using White Rot Fungi. BioResources , 1 (7), 984-987.

Blanchette, R. A. (1995). Degradation of the lignocellulose complex in wood. Canadian Journal of Botany , 1 (73), 999-1010. DOI: 10.1139/b95-350

Hatakka, A. (2001). Biodegradation of lignin. 129-180.

Mussatto, S. I., & Teixeira, J. (2010). Lignocellulose as raw material in fermentation processes. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (Méndez-Vilas, A, Ed) , 2, 897-907. URI: http://hdl.handle.net/1822/16762

Gawande, P. V., & Kamat, M. Y. (1999). Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. Journal of Applied Microbiology (87), 511-519. DOI: 10.1046/j.1365-2672.1999.00843.x

Saha, B. C. (2003). Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol (30), 279-291. DOI: 10.1007/s10295-003-0049-x

Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol , 1 (83), 1-11. DOI: 10.1016/S0960-8524(01)00212-7

Castillo, R. D., Parra, C., Troncoso, E., Franco, H., Pena, S., & Freer, J. (2014). Nir Spectroscopy applied to the Characterization and Selection of Pre-Treated Materials from Multiple Lignocellulosic Resources for Bioethanol Production. J. Chil. Chem. Soc. , 59 (1). DOI: 10.4067/S0717-97072014000100022

Gutierrez, E. D., Amul, K. M., Carpio, R. M., & Toledo, A. R. (2015). Effect of Selected Fermentation Parameters on Bioethanol Production from Ripe Carabao Mango (Mangifera indica) Peelings. Asia Pacific Journal of Multidisciplinary Research , 3 (4).

Mastuti, R. (2016). Nutrisi Mineral Tumbuhan. Modul 2-1 : Elemen esensial: Fungsi, absorbsi dari tanah oleh akar, mobilitas, dan defisiensi .

Oktana, R. (2013). Gula Reduksi.

Gaman, P. M., & Sherington, K. B. (1992). Ilmu Pangan: Pengantar Ilmu Pangan Nutrisi dan Mikrobiologi.

Kirk, T. M., & Farrell, R. (1987). Enzymatic ''combustion'': the microbial degradation of lignin. Annu Rev Microbiol , 41, 465-505. DOI: 10.1146/annurev.mi.41.100187.002341

Reddy, M. K., Maruthi, Y. A., & Lakshmi, K. A. (2010). Aspergillus flavus and Phanerochaete chrysosporium as potential delignifying mycoflora of dump yard: a case study. Rasayna J. Chem. , 3, 438-444.

Aliyu, N., Kassim, H., Aliyu, H., Abu, R. J., & Adamu, Z. (2017). Comparative Production of Cellulase from Chemical and Biological Pretreated Groundnut Husk. Advances in Research , 10 (6), 1-7. DOI: 10.9734/AIR/2017/18155

Ramirez, R. S. (2010). Kinetic Modeling and Assessment of Lime Pretreatment of Poplar Wood. Dissertation, Texas A&M University, Chemical Engineering. URI: https://hdl.handle.net/1969.1/ETD-TAMU-2010-12-8641

Downloads

Published

2020-05-13

Issue

Section

Articles