Bioconversion of Napier Grass Mixed with Soybean Curd Residue Producing Bioethanol through Simultaneous Saccharification and Fermentation in a Solid State Culture

Authors

  • T Taufikurahman Department of Bioengineering, School of Life Sciences and Technology, Bandung Institute of Technology
  • Jessica Jessica Department of Bioengineering, School of Life Sciences and Technology, Bandung Institute of Technology

DOI:

https://doi.org/10.5614/3bio.2020.2.1.4

Keywords:

Bioethanol, Neurospora sitophila, FPAse, Simultaneous Saccharification and Fermentation (SSF), Solid State Culture

Abstract

Napier grass is a promising lignocellulosic biomass for bioethanol production because of its high cellulose content and high annual productivity. Converting a lignocellulosic biomass into a bioethanol usually takes two steps which resulted in a long processing time and sometimes includes the utilization of hazardous chemicals. Simultaneous saccharification and fermentation in a solid-state culture using single bioconversion agent, Neurospora sitophila Shear, can reduce the overall processing time and also increase the yield of the products. The research is aimed to determine the optimum aerobic and micro-aerobic conditions that yields the highest enzyme activity and bioethanol concentration from the mixture of Napier grass and soybean curd residue. The saccharification and fermentation process was conducted in the laboratory using an incubator at 33oC. The cellulase enzyme activity was calculated as FPAse. The highest activity achieved was 0.538 filter paper unit with the optimum mass ratio of Napier grass to soybean curd residue was 1:1 on the second day of cultivation period. The fermentation process was conducted aerobically for two days and then followed by six days of micro-aerobic fermentation, resulting in the highest bioethanol yield of 2.12% (w/w) at the end of the culture period. The optimum mass ratio was found to be 9:1. This study shows that Napier grass and simultaneous saccharification and fermentation method has a great potential for cellulase and bioethanol production, but further improvement on the micro-aerobic system is needed to maximize the bioethanol yield.

References

BPH Migas 2017 Konsumsi BBM Nasional per Tahun.

Duta D. 2016 Pertamina Impor BBM 8 Juta Barel per Bulan.

US Department of Energy 2018 Ethanol Vehicle Emission. https://afdc.energy.gov/fuels/ethanol_benefits.html.

Stradling R, Williams J, Hamje H and Rickeard D 2016, Effect of Octane on Performance, Energy Consumption and Emissions of Two Euro 4 Passenger Cars Transp. Res. Procedia 14 3159"?68 DOI: 10.1016/j.trpro.2016.05.256

Gasparatos A, Stromberg P and Takeuchi K 2013 Sustainability impacts of first-generation biofuels Anim. Front. 3 12"?26 DOI: 10.2527/af.2013-0011

Rubin E M 2008 Genomics of cellulosic biofuels Nature 454 841"?5 DOI: 10.1038/nature07190

Badger P 2002 Ethanol from cellulose: A general review Trends new Crop. new uses 17"?21

Sladden S E, Bransby D I, Aiken G E and Prine G M 1991 Biomass yield and composition, and winter survival of tall grasses in Alabama Biomass and Bioenergy 1 123"?7 DOI: 10.1016/0961-9534(91)90035-B

Negawo A ., Teshome A, Kumar A, Hanson J and Jones C . 2017 Opportunities for Napier Grass (Pennisetum purpureum) Improvement Using Molecular Genetics Agronomy 7 28 DOI: 10.3390/agronomy7020028

Anderson W, Dien B, Brandon S and Peterson J 2008 Assesment of Bermuda and Bunch Grasses as Feedstock for Conversion to Ethanol Appl.Biochem.Biotechnol 13"?21 DOI: 10.1007/978-1-60327-526-2_3

Olofsson K, Bertilsson M and Lidén G 2008 A short review on SSF "? an interesting process option for ethanol production from lignocellulosic feedstocks Biotechnol. Biofuels 1 7 DOI: 10.1186/1754-6834-1-7

Dogaris I, Vakontios G, Kalogeris E, Mamma D and Kekos D 2009 Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol Ind. Crops Prod. 29 404"?11 DOI: 10.1016/j.indcrop.2008.07.008

Manpreet S, Sachin S and Banerjee S 2005 Influence of process parameters on the production of metabolites in solid-state fermentation Malalaysian Jounal Microbiol. 1 1"?9 URI: https://core.ac.uk/download/pdf/25870202.pdf

Li S, Zhu D, Li K, Yang Y, Lei Z and Zhang Z 2013 Soybean Curd Residue: Composition, Utilization, and Related Limiting Factors ISRN Ind. Eng. 2013 1"?8 DOI: 10.1155/2013/423590

Kanti A and Sudiana I M 2018 Production of Phytase, Amylase and Cellulase by Aspergillus, Rhizophus and Neurospora on Mixed Rice Straw Powder and Soybean Curd Residue IOP Conf. Ser. Earth Environ. Sci. 166 DOI: 10.1088/1755-1315/166/1/012010

Wahyudi P 2008 Enkapsulasi Propagul Jamur Entomopatogen Beauveria bassiana Menggunakan Alginat dan Pati Jagung sebagai Produk Mikoinsektisida 53

Datta R 1981 Acidogenic fermentation of corn stover Biotechnol. Bioeng. 23 61"?77 DOI: 10.1002/bit.260230106

Kjeldahl J 1883 A New Method for the Determination of Nitrogen in Organic Matter Zeitschrift für Anal. Chemie 366"?82

Rao M, Deshpande V, Keskar S and Srinivasan M C 1983 Cellulase and ethanol production from cellulose by Neurospora crassa Enzyme Microb. Technol. 5 133"?6 DOI: 10.1016/0141-0229(83)90048-0

Ghose T . . 1987 MEASUREMENT OF CELLULASE ACTIVITY pure Appl. Chem. 59

Miller G L 1959 Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar Anal. Chem. 31 426"?8

Joshi V K and Devrajan A 2008 Ethanol recovery from solid state fermented apple pomace and evaluation of physico-chemical characteristics of the residue Nat. Prod. Radiance 7 127"?32 URI: http://hdl.handle.net/123456789/5656

Crowell E A and Ough C S 1979 A Modified Procedure for Alcohol Determination by Dichromate Oxidation Am. J. Enol. Vitic. 30 61 LP "? 63

Rengsirikul K, Ishii Y, Kangvansaichol K, Sripichitt P, Punsuvon V, Vaithanomsat P, Nakamanee G and Tudsri S 2013 Biomass Yield, Chemical Composition and Potential Ethanol Yields of 8 Cultivars of Napiergrass (<i>Pennisetum purpureum</i> Schumach.) Harvested 3-Monthly in Central Thailand J. Sustain. Bioenergy Syst. 03 107"?12 DOI: 10.4236/jsbs.2013.32015

Yasuda M, Ishii Y and Ohta K 2015 Napier grass (Pennisetum purpureum Schumach) as raw material for bioethanol production: Pretreatment, saccharification, and fermentation Biotechnol. Bioprocess Eng. 19 943"?50 DOI: 10.1007/s12257-014-0465-y

Montipó S, Ballesteros I, Fontana R C, Liu S, Martins A F, Ballesteros M and Camassola M 2018 Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass Bioresour. Technol. 249 1017"?24 DOI: 10.1016/j.biortech.2017.11.001

Kataria R, Mol A, Schulten E and Happel A 2017 Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis Ind. Crops Prod. 106 48"?58 DOI: 10.1016/j.indcrop.2016.08.050

Welker C, Balasubramanian vimal kumar, Petti C, Rai K, Debolt S and Mendu V 2015 Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts Energies 2015 7654"?76 DOI: 10.3390/en8087654

Takara D and Khanal S K 2015 Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential. Bioresour. Technol. 188 103"?8 DOI: 10.1016/j.biortech.2015.01.114

Kikas T, Tutt M, Raud M, Alaru M, Lauk R and Olt J 2016 Basis of energy crop selection for biofuel production: Cellulose vs. lignin Int. J. Green Energy 13 49"?54 DOI: 10.1080/15435075.2014.909359

Abd-Aziz S, Ang D C, Yusof H M, Karim M I A, Ariff A B, Uchiyama K and Shioya S 2001 Effect of C/N ratio and starch concentration on ethanol production from sago starch using recombinant yeast World J. Microbiol. Biotechnol. 17 713"?9 DOI: 10.1023/A:1012981206897

Schmid J and Harold F M 1988 Dual Roles for Calcium Ions in Apical Growth of Neurospora crassa Microbiology 134 2623"?31 DOI: 10.1099/00221287-134-9-2623

Silverman-Gavrila L B and Lew R R 2000 Calcium and tip growth in Neurospora crassa Protoplasma 213 203"?17 DOI: 10.1007/BF01282158

Oguntimein G, Vlach D and Moo-Young M 1992 Production of cellulolytic enzymes by Neurospora sitophila grown on cellulosic materials Bioresour. Technol. 39 277"?83 DOI: 10.1016/0960-8524(92)90217-L

Li Y, Peng X and Chen H 2013 Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation J. Biosci. Bioeng. 116 493"?498 DOI: 10.1016/j.jbiosc.2013.04.001

Holker U, Hofer M and Lenz J 2004 Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64 175"?86 DOI: 10.1007/s00253-003-1504-3

Phadtare S U, Rawat U B and Rao M B 1997 Purification and characterisation of xylitol dehydrogenase from Neurospora crassa NCL communication No. 6347. FEMS Microbiol. Lett. 146 79"?83 DOI: 10.1111/j.1574-6968.1997.tb10174.x

Tsai P-J, Wu S-C and Cheng Y-K 2008 Role of polyphenols in antioxidant capacity of Napier Grass from different growing seasons Food Chem. 106 27"?32 DOI: 10.1016/j.foodchem.2007.05.037

SUZUKI T, YAMAZAKI N, SADA Y, OGUNI I and MORIYASU Y 2003 Tissue Distribution and Intracellular Localization of Catechins in Tea Leaves Biosci. Biotechnol. Biochem. 67 2683"?6 DOI: 10.1271/bbb.67.2683

Downloads

Published

2020-05-13

Issue

Section

Articles