The Physiological Responses of Water Hyacinth (Eichhornia crassipes (Mart). Solms) and Water Lettuce (Pistia stratiotes L.) as Trivalent Chromium Bioaccumulator
DOI:
https://doi.org/10.5614/3bio.2020.2.1.2Keywords:
bioaccumulator plants, heavy metal, water hyacinth, water lettuceAbstract
Chromium is one of the heavy metals used in industrial fields, i.e., metallurgical industry, chemical industry, heat-retardant, and leather tanning industry. Untreated wastewater from these industries can pollute rivers and threaten the aquatic ecosystem. Some aquatic plants such as water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) have been known as metal hyperaccumulators and can be used as phytoremediator for polluted water. This study aims to determine the physiological and morphological responses of water hyacinth and water lettuce plants treated by different concentrations of trivalent chromium and to study which plant is effective for trivalent chromium removal. The experiment was conducted for 2 week at screen house. After two weeks, the plants were harvested and the weight was measured. The samples were separated into shoot and root and were analyzed for Cr content, chlorophyll, proline and CAT enzyme activity. The results of this study indicated that the levels of water hyacinth chromium in roots and leaves are lower (863.988 mg/Kg, 899.126 mg/Kg, 685.877 mg/Kg for treatment 40 ppm, 80 ppm, and 120 ppm respectively) than the levels of chromium in water lettuce (1584.264 mg/Kg, 1660 mg/Kg, 1413 mg/Kg for treatment 40 ppm, 80 ppm, and 120 ppm respectively). Physiological parameter, i.e., chlorophyll and proline levels in water hyacinth and water lettuce from all concentration treatment did not differ significantly (P> 0.05). The activity of the catalase enzyme in water hyacinth and water lettuce decreased with increasing chromium levels. The highest catalase enzyme activity was observed in control treatment of water lettuce (1.61 unit/mg) and 40 ppm treatment of water hyacinth (1.006 unit/mg). The highest biomass dry weight of both plants was found in plants with control treatment (15.38 gr and 8.48 gr for water hyacinth and water lettuce respectively). Therefore, we concluded that water lettuce is better for trivalent chromium removal than water hyacinth.
References
Owlad M, M.K. Aroua, W.A.W. Daud, S. Baroutian. 2008. Removal of hexavalent chromium-contaminated water and wastewater: A review. Water Air Soil Pollute, 200:59-77. DOI: 10.1007/s11270-008-9893-7
Di Palma, L., 2015. Hexavalent Chromium Reduction in Contaminated Soil: A Comparison Between Ferrous Sulphate and Nanoscale Zero-Valent Iron. J. Hazard. Mater. 281: 70-76. DOI: 10.1016/j.jhazmat.2014.07.058
Xu B., Fang W., Qiuhong Z., Qingqing L., Chaoyang L., Xuan G., Qiuying C., Yanhui C., Guo W., Jing D., 2018. Influence of iron Plaque on the Uptake and Accumulation of Chromium by Oryza sativa L. seedlings: Insight from Hydroponic and Soil cultivation. Ecotoxicology and Environmental Safety, 51-58. DOI: 10.1016/j.ecoenv.2018.06.063
Singh, H.P. 2013. Chromium Toxicity and Tolerance in Plants. Environ. Chem. Lett 11, 229-254. DOI: 10.1007/s10311-013-0407-5
Yadav, S.K. 2010. Heavy Metal Toxicity in Plants: An Overview on the Role of Glutathione and Phytochelatin in Heavy Metal Stress Tolerance of Plants. South African Journal of Botany,167-179. DOI: 10.1016/j.sajb.2009.10.007
Tanner, R. 2017. Pistia stratiotes L. Bulletin OEPP/ EPPO Bulletin 47 (3), 537-534. DOI: 10.1111/epp.12429
Cervantes, C., Campos-Garcia, J., Devars, S., Guiterresz-Corona, F., Loza-Tavera, H., Torres-Guzman, J.C., Moreno-Sanchez, R. 2001. Interactions of Chromium with Microorganisms and Plants. FEMS Microbiology Reviews 25, 335-347. DOI: 10.1111/j.1574-6976.2001.tb00581.x
Shanker A.K., Cervantesb C., Loza-Taverac H., Avudainayagam, 2005. Chromium Toxicity in Plants. Environmental International 31 , 739-753. DOI: 10.1016/j.envint.2005.02.003
Vajpayee, P., Tripathi, R.D., Rai, U.N., Ali, M.B., Singh, S.N. 2000 Chromium Accumulation Reduces Chlorophyll Biosynthesis, Nitrate Reductase Activity and Protein Content in Nympaea alba L. Chemosphere 41, 1075"?1082. DOI: 10.1016/S0045-6535(99)00426-9
Skeffington, R.A., Shewry, P.R., Perterson, P.J., 1976. Chromium Uptake and Transport in Barley Seedlings (Hordeum vulgare L.). Planta 19, 807"?810. DOI: 10.1007/BF00399719
Viktor, K., Ladji, M., Adjiri, A., Cyrille, Y. D. A., Sanogo, T. A. Bioaccumulation of Heavy Metals from Wastewaters (Pb, Zn, Cd, Cu and Cr) in Water Hyacinth (Eichhornia crassipes) and Water Lettuce (Pistia stratiotes). International Journal of ChemTech Research Vol.9. 2016. No.02 , 189-195.
Asati, A., Pichhode, M., Nikhil, K. 2015. Effect of Heavy Metals on Plants: An Overview. IJAIEM .ISSN 2319- 4847. URI: http://cimfr.csircentral.net/id/eprint/1693
Shanker AK, Sudhagar R, Pathmanabhan G. 2003. Growth Phytochelatin SH and antioxidative response of Sunflower as affected by chromium speciation. In: 2nd international congress of plant physiology on sustainable plant productivity under changing environment, New Delhi.
Kalra, Yash. P. 1998. Handbook of Reference Methods for Plant Analysis. Ch 24. CRC Press. New York.
MacFarlane, G.R., E.C. Koller, and S.P. Blomberg. 2007. Accumulation and Patitioning of Heavy Metals in Mangrove: A Synthesis of Field-based Studies. Chemosphere, 1454-1464. DOI: 10.1016/j.chemosphere.2007.04.059
Yoon, J., C. Xinde, Z. Qixing , and L.Q. Ma. 2006. Accumulation of Pb, Cu, and Zn in Native Plants Growing on a Contaminated Florida Site. Science of the Total Environment, 456-464. DOI: 10.1016/j.scitotenv.2006.01.016
Hendry, G.A.F. dan Grime, J.P. 1993. Methods in comparative plant ecology. Springer, New York.
Bates, L.S. Waldren, R.P. Teare, I.D. 1972. Rapid Determination of Free Proline For Water Stress Studies. Plant & Soil 39, 205-207. DOI: 10.1007/BF00018060
Maksimovic, J.J.D dan Zianovic, B.D. 2012. Quantification of The Antioxidant Activity in Salt-Stress Tissue. 237-250
Mayzarah, E, M., Moersidik, S. S., Saria, L. 2018. Control of Chromium Hexavalent (Cr -VI) Pollution on Waste Water in Nickel Ore Extraction Industry with Phytoremediation Technology. E3S Web of Conference 68, 03011. DOI: 10.1051/e3sconf/20186803011
Chakraborty, R., Karmakar, S., Mukherjee, S., Kumar, S. 2014. Kinetic Evaluation of Chromium (VI) absorption by water lettuce (Pistia). Water Sci Technol69 (1): 195"?201.
Duca, M. 2015. Plant Physiology: Biological and Medical Physics, Biomedical Engineering. Springer.
Aisien, F. A, Faleye, O., Aisien, E. T. 2010. Phytoremediation of Heavy Metals in Aqueous Solutions . Leonardo Journal of Sciences, 37-46
Ma, L. Q., K.M. Komar, C. Tu, and W. A. Zhang. 2001. A fern that Hyperaccumulator arsenic. Nature , 409:579 DOI: 10.1038/35054664
Isratul Izzah, Supriatno dan Wardiah. 2017. Kiambang (Pistia stratiotes) sebagai agen fitoremediasi logam krom (Cr). Prosiding Seminar Nasional Biotik.
Yap, C.K., Fitri, Mohd, M. R., Mazyhar, Y. & TA, S.G. 2010. Effects of Metal Contaminated Soils on The Accumulation of Heavy Metals in Different Part of Centella asiatica. A Laboratory Study. Sains Malaysiana 39 (3).
Panda, SK, Choudhury S. 2005. Chromium stress in plants. Brazilian Journal of Plant Physiology 17:95-102. DOI: 10.1590/S1677-04202005000100008
Puspita, U.R., Siregar, A.S, Hidayati, N.V. 2011. Kemampuan Tumbuhan Air Sebagai Agen Fitoremediator Logam Berat Kromium (Cr) Yang Terdapat Pada Limbah Cair Industri Batik. Berkala Perikanan TERUBUK, 39 (1). DOI: 10.31258/terubuk.39.1.%25p
Ai, Nio Song dan Banyo, Y. 2011. Konsentrasi Klorofil Daun Sebagai Indikator Kekurangan Air pada Tanaman. Jurnal Ilmiah Sains Vol 11. No 2, 166-173. DOI: 10.35799/jis.11.2.2011.202
Pandey, V., Dikshit V., Shyam, R. 2012. Hexavalent Chromium Induced Inhibition of Photosynthetic Electron Transport inIsolated Spinach Chloroplast. Intech, 229-244 DOI: 10.5772/55143
Rai, V and Mehrotra, S. 2004. Effect of Chromium Accumulation on Photosynthetic Pigments, Oxidative Stress Defense System, Nitrate Reduction, Proline Level and Eugenol Content of Ocimum tenuiforum L. Elsivier. Plant Science Vol.167: 1159-1169. DOI: 10.1016/j.plantsci.2004.06.016
Verslues, P.E and Sharma, S., 2010. The Arabidopsis Book: Proline metabolism and its Implication for Plant-environment Interaction. American Society of Plant Biologist. DOI: 10.1199/tab0140
Odjegba, V.J. and Fasidi, I.O. (2007). Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontideriaceae) and Pistia stratiotes (Araceae) under heavy metal stress. Rev. Biol. Trop. (Int. J. Trop. Biol.). 55(3-4):815-823.
Borker, A.R., Mane, A.V., Saratale, G.D., and Pathade, G.R. (2013). Phytoremediation potential of Eichhornia crassipes for the treatment of cadmium in relation with biochemical and water parameters. Emir. J. Food. Agric. 25(6) : 443-456. doi:10.9755/ejfa.v25i6.13970 DOI: 10.9755/ejfa.v25i6.13970
Sangya, S.B., Lawrence, K. and Pandey, A.K. 2016. Phytoremediation Potential of Eichhornia crassipes (Mart.) Solms. IJEAB. 1(2) : 210-217.
Sofo, A., Scopa, A., Nuzzaci, M., Vitti, A. 2015. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses.Int. J. Mol. Sci. 16, 13561-13578 OPEN ACCESS DOI: 10.3390/ijms160613561
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Rizka Purnamawati, T Taufikurahman, Andira Rahmawati, Chalvin Rura Putra, Din Dzakamala Fafi Rahmatilah, Findy Ashgi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.