Global Inversion of Grounded Electric Source Time-domain Electromagnetic Data Using Particle Swarm Optimization


  • Cahyo Aji Hapsoro Physics of Earth and Complex System, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132,
  • Wahyu Srigutomo Physics of Earth and Complex System, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132,
  • Acep Purqon Physics of Earth and Complex System, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132,
  • Warsa warsa Applied Geophysics and Exploration, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132
  • Doddy Sutarno Physics of Earth and Complex System, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132,
  • Tsuneomi Kagiyama Aso Volcanological Laboratory, Institute for Geothermal Sciences, Graduate School of Science, Kyoto University, 3028 Sakanashi, Ichinomiyamachi, Aso, Kumamoto 869 2911,



horizontal electric dipole, particle swarm optimization, resistivity, electromagnetic time-domain, synthetic and field data, volcanic-geothermal area


Global optimization inversion of grounded wire time-domain electromagnetic (TDEM) data was implemented through application of the particle swarm optimization (PSO) algorithm. This probabilistic approach is an alternative to the widely used deterministic local-optimization approach. In the PSO algorithm, each particle that constitutes the swarm epitomizes a probable geophysical model comprised by subsurface resistivity values at several layers and layer thicknesses. The forward formulation of the TDEM problem for calculating the vertical component of the induced magnetic field is first expressed in the Laplace domain. Transformation of the magnetic field from the Laplace domain into the time domain is performed by applying the Gaver-Stehfest numerical method. The implementation of PSO inversion to the TDEM problem is straightforward. It only requires adjustment of a few inversion parameters such as inertia, acceleration coefficients and numbers of iteration and particles. The PSO inversion scheme was tested on synthetic noise-free data and noisy synthetic data as well as to field data recorded in a volcanic-geothermal area. The results suggest that the PSO inversion scheme can effectively solve the TDEM 1D stratified earth problem.


Download data is not yet available.


Kaufman, A.A. & Keller, G.V., Frequency and Transient Soundings, Elsevier, Amsterdam, 1983.

Ward, S.H. & Hohmann, G.W., 4. Electromagnetic Theory for Geophysical Applications, in Electromagnetic Methods in Applied Geophysics, pp. 130-311, 1998.

Nabighian, M.N. & Macnae, J.C., 6. Time Domain Electromagnetic Prospecting Methods, in Electromagnetic Methods in Applied Geophysics, 1991.

Qi, Y., Huang, L., Wu, X., Zhu, W., Fang, G. & Yu, G., Full Wafeform Modeling of Transient Electromagnetic Response Based on Temporal Interpolation and Convolution Method. Pure and Applied Geophysics, 176, 2465-2477, 2019.

Morisson, H.F., Phillips, R.J. & O?Brien, D.P., Quantitative Interpolation of Transient Electromagnetic Fields of a Layered Half Space, Geophysical Prospecting, 17(1), pp. 82-101, 1969.

Smith, R.S., On Removing the Primary Field from Fixed-Wing Time-Domain Airborne Electromagnetic Data: Some Qonsecuences for Quantitative Modelling, Estimating Bird Position and Detecting Perfect Conductors, Geophysical Prospecting, 49(4), pp. 405-416, 2001.

Newman, G.A., Hohmann, G.W. & Anderson, W.L., Transient Electromagnetic Response of A Three-Dimensional Body in A Layered Earth, Geophysics, 51(8), pp. 1608-1627, 1986.

Farquharson, C.G. & Oldenburg, D.W., Inversion of Time-Domain Electromagnetic Data for a Horizontally Layered Earth, Geophysical Journal International, 114(3), pp. 433-442, 1993.

Mitsuhata, Y., Murakami, Y., Uchida, T. & Amano, H., The Fourier Transform of Controlled-Source Time-domain Electromagnetic Data by Smooth Spectrum Inversion, Geophysical Journal International, 144(1), pp. 123-135, 2001.

Knight, J.H. & Raiche, A.P., Transient electromagnetic calculations using the Gaver-Stehfest Inverse Laplace Transform Method, Geophysics, 47(1), pp. 47-50, 1982.

Villinger, H., Solving Cylindrical Geothermal Problems Using the Gaver-Stehfest Inverse Laplace Transform, Geophysics, 50(10), pp. 1581-1587, 1985.

Kuznetsov, A., On the Convergence of the Gaver-Stehfest Algorithm, SIAM Journal on Numerical Analysis, 51(6), pp. 2984-2998, 2013.

Srigutomo, W., Kagiyama, T., Kanda, W., Munekane, H., Hashimoto, T., Tanaka, Y. & Utsugi, M., Resistivity structure of Unzen Volcano derived from Time Domain Electromagnetic (TDEM) Survey, Journal of Volcanology and Geothermal Research, 175(1-2), pp. 231-240, 2008.

Qi, Y., El-Kaliouby, H., Revil, A., Ahmed, A. S., Ghorbani, A. & Li, J., Three-dimensional Modeling of Frequency- and Time-domain Electromagnetic Methods with Induced Polarization Effects, Computers and Geosciences, 124, 85-92, 2019.

Qi, Y., Huang, L., Wu, X., Fang, G. & Yu, G., Effect of Loop Geometry on TEM Response Over Layered Earth, Pure and Applied Geophysics, 171, pp. 2406-2415, 2014.

Anderson, W.L., Numerical Integration of related Hankel Transforms of Orders 0 and 1 by Adaptive

Digital Filtering, Geophysics, 44, pp. 1287-1305, 1979.

Fitterman, D.V. & Stewart, M.T., Transient Electromagnetic Sounding for Groundwater, Geophysics, 51(4), pp. 995-1005, 1986.

Zhdanov, M.S. & Pavlov, D.A., Analysis and Interpretation of Anomalous Conductivity and Magnetic Permeability Effects in Time Domain Electromagnetic Data, Part II: S?-inversion, Journal of Applied Geophysics, 46, pp. 235-248, 2001.

Qi, Y., Haung, L., Wang, X., Fang, G. & Yu, G., Airborne Transient Electromagnetic Modeling and Inversion under Full Attitude Change, IEEE Geoscience and Remote Sensing Letters, 14(9), pp. 1575-1579, 2017.

Blatter, D., Key, K., Ray, A., Foley, N., Tulaczyk, S. & Auken, E., Trans-Dimensional Bayesian Inversion of Airborne Transient EM Data from Taylor Glacier, Antarctica, Geophysical Journal International, 214(3), pp. 1919-1936, 2018.

Newman, G.A., Hohmann, G.W. & Anderson, W.L., Transient Electromagnetic Response of a Three-Dimensional Body in a Layered Earth, Geophysics, 51(8), pp. 1608-1627, 1986.

Asten, M.W., Full Transmitter Waveform Transient Electromagnetic Modelling and Inversion for Sounding Over Coal Measures, Geophysics, 52(3), pp. 279-288, 1987.

Haber, E., Oldenburg, D.W. & Shekhtman, R., Inversion of Time Domain Three-Dimensional Electromagnetic Data, Geophysical International Journal, 171, pp. 550-564, 2007.

Kanda, W., Utada, H., Mishina, M. & Sumitomo, N., A Deep Transient EM Experiment in the Northern Part of Miyagi Prefecture, Northeastern Japan, Journal of Geomagnetism and Geoelectricity, 48, pp. 1265-1280, 1996.

Gunderson, B.M., Newman, G.A. & Hohman, G.W. Three-Dimensional Transient Electromagnetic Responses for a Grounded Source, Geophysics, 51(11), pp. 2117-2130, 1986.

Srigutomo, W., Warsa, W., Sule, R., Trimadona, Prasetyo, D., Saito, & Widarto, D.S., Time-domain Electromagnetic (TDEM) Baseline Survey for CCS in Gundih Area, Central Java, Indonesia, Proceedings of the 12th SEGJ International Symposium, Tokyo, Japan, 18-20 November, pp. 114-118, 2015.

Ferndez-Martez, J.L., Garc-Gonzalo, E. & Naudet, V., Particle Swarm Optimization Applied to Solving and Appraising the Streaming-Potential Inverse Problem, Geophysics, 75(4), pp. 1JA-Z98, 2010.

Sen, M.K., Bhattacharya, B.B. & Stoffa, P.L., Nonlinear Inversion of Resistivity Sounding Data, Geophysics, 58(4), pp. 496-507, 1993.

Godio, A. & Santilano, A., On the Optimization of Electromagnetic Geophysical Data: Application of the PSO Algorithm, Journal of Applied Geophysics, 148, pp. 163-174, 2018.

Kennedy, J. & Eberhart, R., Prognostic Evaluation of Abdominal Echography in Typhoid Fever, Giornale Di Malattie Infettive e Parassitarie, 46(10), pp. 1942-1948, 1994.

Reynolds, C.W., Flocks, Herds, and Schools: A Distributed Behavioral Model, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 25-34, 1987.

Eberhart, R.C. & Shi, Y., Particle Swarm Optimization: Developments, Applications and Resources, Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 1, pp. 81-86, 2001.

Liu, S., Liang, M. & Hu, X., Particle Swarm Optimization Inversion of Magnetic Data: Field Examples from Iron Ore Deposits in China, Geophysics, 83(4), pp. J43-J59, 2018.

Essa, K.S. & Elhussein, M., PSO (Particle Swarm Optimization) for Interpretation of Magnetic Anomalies Caused by Simple Geometrical Structures, Pure and Applied Geophysics, 175(10), pp. 3539-3553, 2018.

Essa, K.S. & Munschy, M., Gravity Data Interpretation Using the Particle Swarm Optimisation Method with Application to Mineral Exploration, Journal of Earth System Science, 128(5), Article No. 123, 2019.

He, M., Liu, M., Wang, R., Jiang, X., Liu, B. & Zhou, H., Particle Swarm Optimization with Damping Factor and Cooperative Mechanism, Applied Soft Computing Journal, 76, pp. 45-52, 2019.

Ferndez Martez, J.L., Garc Gonzalo, E., Ferndez varez, J.P., Kuzma, H. A. & Mendez Pez, C. O., PSO: A Powerful Algorithm to Solve Geophysical Inverse Problems Application to a 1D-DC Resistivity Case, Journal of Applied Geophysics, 71(1), pp. 13-25, 2010.

Pek?en, E., Yas, T. & K?yak, A., 1-D DC Resistivity Modeling and Interpretation in Anisotropic Media Using Particle Swarm Optimization, Pure and Applied Geophysics, 171(9), pp. 2371-2389, 2014.

Wilken, D. & Rabbel, W., On the Application of Particle Swarm Optimization Strategies on Scholte-wave Inversion, Geophysical Journal International, 190(1), pp. 580-594, 2012.

Poormirzaee, R., Moghadam, R.H. & Zarean, A., Inversion seismic Refraction Data Using Particle Swarm Optimization: A Case Study of Tabriz, Iran. Arabian Journal of Geosciences, 8(8), pp. 5981-5989, 2015.

Yang, H., Xu, Y., Peng, G., Yu, G., Chen, M., Duan, W. & Wang, X., Particle Swarm Optimization and its Application to Seismic Inversion of Igneous Rocks, International Journal of Mining Science and Technology, 27(2), pp. 349-357, 2017.

Xiong, J. & Zhang, T., Multiobjective Particle Swarm Inversion Algorithm for Two-Dimensional Magnetic Data, Applied Geophysics, 12(2), pp. 127-136, 2015.

Toushmalani, R., Gravity Inversion of a Fault by Particle Swarm Optimization (PSO), SpringerPlus, 2(1), pp. 1-7, 2013.

Singh, A. & Biswas, A., Application of Global Particle Swarm Optimization for Inversion of Residual Gravity Anomalies Over Geological Bodies with Idealized Geometries, Natural Resources Research, 25(3), pp. 297-314, 2016.

Singh, K.K. & Singh, U.K., Application of Particle Swarm Optimization for Gravity Inversion of 2.5-D Sedimentary Basins Using Variable Density Contrast, Geoscientific Instrumentation, Methods and Data Systems, 6(1), pp. 193-198, 2017.

Desmarais, J.K. & Spiteri, R.J., Fast Automated Airborne Electromagnetic Data Interpretation Using Parallelized Particle Swarm Optimization. Computers and Geosciences, 109, pp. 268-280, 2017.

Srivardhan, V., Pal, S.K., Vaish, J., Kumar, S., Bharti, A.K. & Priyam, P., Particle Swarm Optimization Inversion of Self-potential Data for Depth Estimation of Coal Fires Over East Basuria colliery, Jharia coalfield, India, Environmental Earth Sciences, 75(8), Article No. 688, 2016.

Chau, K. W., Particle Swarm Optimization Training Algorithm for ANNs in Stage Prediction of Shing Mun River, Journal of Hydrology, 329(3-4), pp. 363-367, 2006.

Ferndez Martez, J.L., Mukerji, T., Garc Gonzalo, E. & Suman, A., Reservoir Characterization and Inversion Uncertainty via a Family of Particle Swarm Optimizers, Geophysics, 77(1), 2012.

Mishra, K. K., Bisht, H., Singh, T. & Chang, V., A Direction Aware Particle Swarm Optimization with Sensitive Swarm Leader, Big Data Research, 14, pp. 57-67, 2018.

Yogi, I.B.S. & Widodo., Time Domain Electromagnetic 1D Inversion Using Genetic Algorithm and Particle Swarm Optimization, AIP Conference Proceedings, 1861, 2017.

Nabighian, M.N. & Society of Exploration Geophysicists, Electromagnetic Methods in Applied Geophysics: Volume 1, Theory, Society of Exploration Geophysicists, 1988. DOI: 10.1190/ 1.9781560802631.

Erdelyi, A., Ed., Tables of Integral Transforms, McGraw-Hill Book Co, New York, 1954.

Smith, R. & Annan, P., The Use of B-field Measurements in an Airborne Time-Domain System: Part I, Benefits of B-field versus dB/dt Data, Exploration Geophysics, 29, pp. 24-29, 1998.

Farquharson, Colin G. & Oldenburg, D.W., Non-linear Inversion Using General Measures of Data Misfit and Model Structure, Geophysical Journal International, 134(1), pp. 213-227, 1998.

Sasaki, Y., Full 3-D Inversion of Electromagnetic Data on PC, Journal of Applied Geophysics, 46(1), pp. 45-54, 2001.

Haber, E., Oldenburg, D.W. & Shekhtman, R., Inversion of Time Domain Three-Dimensional Electromagnetic Data, Geophysical Journal International, 171(2), pp. 550-564, 2007.

Eaton, P.A. & Hohmann, G.W., A Rapid Inversion Technique for Transient Electromagnetic Soundings, Physics of the Earth and Planetary Interiors, 53(3-4), pp. 384-404, 1989.

Avdeev, D.B., Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application, Surveys in Geophysics, 26, pp. 767-799, 2005.

Stoffa, P.L. & Sen, M.K., Nonlinear Multiparameter Optimization Using Genetic Algorithms: Inversion of Plane-wave Seismograms, Geophysics, 56(11), pp. 1794-1810, 1991.

Kiran, M. S., Particle Swarm Optimization with a New Update Mechanism, Applied Soft Computing Journal, 60, pp. 670-678, 2017.

Menke, W., Geophysical Data Analysis : Discrete Inverse Theory. Academic Press Inc., 1989.

Constable, S.C., Parker, R.L. & Constable, C.G., Occam?s inversion: a Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data, Geophysics, 52(3), pp. 289-300, 1987.

Aster, R.C., Borchers, B. & Thurber, C.H., Parameter Estimation and Inverse Problems, Academic Press, 2013.

Shi, H., Liu, S., Wu, H., Li, R., Liu, S., Kwok, N. & Peng, Y., Oscillatory Particle Swarm Optimizer, Applied Soft Computing Journal, 73, pp. 316-327, 2018.

Xu, G. & Yu, G., On Convergence Analysis of Particle Swarm Optimization Algorithm, Journal of Computational and Applied Mathematics, 333, pp. 65-73, 2018.

Chen, Y., Li, L., Xiao, J., Yang, Y., Liang, J. & Li, T., Particle Swarm Optimizer with Crossover Operation, Engineering Applications of Artificial Intelligence, 70, pp. 159-169, 2018.

Montalvo, I., Izquierdo, J., Pez, R. & Tung, M.M., Particle Swarm Optimization Applied to the Design of Water Supply Systems, Computers and Mathematics with Applications, 56(3), pp. 769-776, 2008.

Kagiyama, T., Utada, H. & Yamamoto, T. Magma Ascent Beneath Unzen Volcano, SW Japan, Deduced from the Electrical Resistivity Structure, Journal of Volcanology and Geothermal Research, 89(1-4), pp. 35-42, 1999.

Marouani, H. & Fouad, Y., Particle Swarm Optimization Performance for fitting of Ly Noise Data, Physica A: Statistical Mechanics and Its Applications, 514, pp. 708-714, 2019.

Hoshizumi, H., Uto, K. & Watanabe, K., Geology and Eruptive History of Unzen Volcano, Shimabara Peninsula, Kyushu, SW Japan, Journal of Volcanology and Geothermal Research, 89(1-4), pp. 81-94, 1999.




How to Cite

Hapsoro, C. A., Srigutomo, W., Purqon, A., warsa, W., Sutarno, D., & Kagiyama, T. (2021). Global Inversion of Grounded Electric Source Time-domain Electromagnetic Data Using Particle Swarm Optimization. Journal of Engineering and Technological Sciences, 53(1), 210101.




Most read articles by the same author(s)