Examining External Dose Rates in Mamuju Regency, Indonesia: A Personal Radiation Dosimetry Approach
DOI:
https://doi.org/10.5614/j.eng.technol.sci.2023.55.6.6Keywords:
Mamuju, natural radiation, radioactive mineral , radiation protection, radiation exposureAbstract
This study aimed to quantify the individual external radiation exposure in Mamuju, Indonesia. A SmartRad portable personal dosimeter was utilized for this purpose, and data was collected over a period of 30 days. The findings indicate that the dose rate varies from 0.152 to 4.200 ?Sv/h and cumulatively ranges from 0.1 to 8.4 ?Sv/day based on an average measurement duration of 160 minutes. The average dose rate in areas with mineral deposits is 11.02 mSv per year. In contrast, the average effective dose in areas without radioactive mineral deposits is 2.6493 mSv per year. The annual average effective dose for individuals was measured at 6.8347 mSv. These findings imply that personal exposure to radiation among the public in Mamuju exceeds the threshold recommended by the International Commission of Radiological Protection.
Downloads
References
Nugraha, E.D., Hosoda, M., Winarni, I.D., Prihantoro, A., Suzuki, T., Tamakuma, Y., Akata, N. & Tokonami, S., Dose Assessment of Radium-226 in Drinking Water from Mamuju, A High Background Radiation Area of Indonesia, Radiation Environment and Medicine, 9(2), pp.79-83, 2020.
Nugraha, E.D., Hosoda, M., Kusdiana, Untara, Mellawati, J., Nurokhim, ... & Tokonami, S., Comprehensive Exposure Assessments from the Viewpoint of Health in a Unique High Natural Background Radiation Area, Mamuju, Indonesia, Scientific Reports, 11(1), 14578, July 2021.
Nugraha, E.D., Hosoda, M., Tamakuma, Y., Kranrod, C., Mellawati, J., Akata, N. & Tokonami, S., A Unique High Natural Background Radiation Area in Indonesia: A Brief Review from the Viewpoint of Dose Assessments, Journal of Radioanalytical and Nuclear Chemistry, 330, pp. 1437-1444, July 2021.
Enviro Korea Co., Ltd. (n.d.), SmartRad Radiation Monitor - Envirokorea Mall, 2021.
Harrison, J.D., Balonov, M., Bochud, F., Martin, C.J., Menzel, H. G., Smith-Bindman, R., ... & Wakeford, R., The use of Dose Quantities in Radiological Protection: ICRP Publication 147 Ann ICRP 50 (1) 2021, Journal of Radiological Protection, 41(2), 410, June 2021.
Yamaguchi, M., Tatara, Y., Nugraha, E.D., Ramadhani, D., Tamakuma, Y., Sato, Y., Miura, T., Hosoda, M., Syaifudin, M., Kashiwakura, I. & Tokonami, S., Detection of Biological Responses to Low-dose Radiation in Humans, Free Radical Biology and Medicine, 184, 196-207, May 2022.
McCollough, C.H. & Schueler, B.A., Calculation of Effective Dose. EDUCATIONAL TREATISE. Med. Phys. 27, May 2000.
Vanhavere, F. & Van Hoey, O., Advances in Personal Dosimetry towards Real-time Dosimetry, Radiation Measurements, 158, 106862, Nov. 2022.
Sukadana, I G., Harijoko, A. & Setijadi, L.D., Tectonic Setting of Adang Volcanic Complex In Mamuju Region, West Sulawesi Province, Eksplorium, 36 (1), pp. 31-34, Mei 2015.
Sukadana, I.G., Syaeful, H., Indrastomo, F.D., Widana, K.S., Identification of Mineralization Type and Specific Radioactive Minerals in Mamuju, West Sulawesi, Journal of East China Univ. Technol, 39(1), pp.36-45, Dec. 2016.
Tang, F.R. & Loganovsky, K., Low Dose or Low Dose Rate Ionizing Radiation-Induced Health Effect in the Human, Journal of Environmental Radioactivity, 192, pp. 32-47, Dec. 2018.
Loose, R.W., Vano, E., Mildenberger, P., Tsapaki, V., Caramella, D., Sjerg, J., Paulo, G., Torresin, A., Schindera, S., Frija, G., Damilakis, J. & European Society of Radiology (ESR)., Radiation Dose Management Systems?Requirements and Recommendations for Users from the ESR EuroSafe Imaging initiative, European Radiology, 31, pp. 2106-2114, April. 2021.
Izewska, J.E., Bera, P. & Vatnitsky, S., IAEA/WHO TLD Postal Dose Audit Service and High Precision Measurements for Radiotherapy Level Dosimetry, Radiation Protection Dosimetry, 101(1-4), 387-392, Aug. 2002.
Walsh, L., Shore, R., Auvinen, A., Jung, T. & Wakeford, R., Risks from CT Scans?What Do Recent Studies Tell Us?, Journal of radiological protection, 34(1), E1, Mar. 2014
Karipidis, K.K., Measurement of Residential Power Frequency Magnetic Fields. Australian Radiation Protection & Nuclear Safety Agency, Technical Report 134, Newell, D.B., & Tiesinga, E., The International System of Units (SI), NIST Special Publication, 330, pp.1-138, Aug. 2019.
Veerasamy, N., Sahoo, S.K., Inoue, K., Arae, H. & Fukushi, M., Geochemical Behavior of Uranium and thorium in Sand and Sandy Soil Samples from a Natural High Background Radiation Area of the Odisha coast, India, Environmental Science and Pollution Research, 27, pp. 31339-31349, Sept. 2020.
Zhang, Y., Shao, X., Yin, L. & Ji, Y., Estimation of Inhaled Effective Doses of Uranium and Thorium for Workers in Bayan Obo Ore and the Surrounding Public, inner Mongolia, China, International Journal of Environmental Research and Public Health, 18(3), 987, Jan. 2021.
Tokonami, S., Natural Radiation Exposure to the Public in the Uranium and Thorium Bearing Regions of Cameroon: From Measurements, Dose Assessment to a National Radon Plan, (No. IAEA-CN--261), 2018.