Curie Point Depth Analysis of Lesugolo Area, East Nusa Tenggara, Indonesia Based on Ground Magnetic Data

Authors

  • Alamta Singarimbun Physics of Earth and Complex Systems, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia
  • Umar Said Physics of Earth and Complex Systems, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia
  • Dini Andriani Department of Nautica, Cirebon Maritime Academy, Jalan Dukuh Semar 1, Kecapi, Harjamukti, Cirebon 45142, Indonesia
  • R. B. Astro Physics Education, Faculty of Teacher Training and Education, University of Flores, Jalan Sam Ratulangi, Paupire, Ende Tengah, Ende, East Nusa Tenggara 86316, Indonesia
  • Bakrun Bakrun Center for Mineral, Coal and Geothermal Resources, Geological Agency, Ministry of Energy and Mineral Resources of Indonesia, Jalan Soekarno-Hatta 444 Bandung 40254 Indonesia
  • I G. P. F. Soerya Djaja Physics of Earth and Complex Systems, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia
  • Eleonora Agustine Geophysics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jalan Raya Bandung ? Sumedang Km 21, Jatinangor, Sumedang 46353, Indonesia
  • Pepen Supendi eophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia
  • Wahyu Srigutomo Physics of Earth and Complex Systems, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia

DOI:

https://doi.org/10.5614/j.eng.technol.sci.2022.54.1.11

Keywords:

Curie point depth, Flores Island, geothermal system of Lesugolo, ground magnetic data, spectral analysis

Abstract

The Curie point depth, or magnetic basal depth, of the Lesugolo geothermal area in Ende, Flores Island, East Nusa Tenggara, Indonesia was estimated by performing spectral analysis on spatial magnetic data and transforming it into the frequency domain, resulting in a link between the 2D spectrum of magnetic anomalies and the depths of the top and centroid of the magnetic sources. Shallow Curie point depths of 16 to 18 km were found in the north-northeast to southeast areas of Lesugolo, while deeper depths of 24 to 26 km were found in the southwest. The tectonic setting beneath the central part of Flores Island governs the distribution of the Curie point depths in the area. Shallow Curie point depth zones are associated with high thermal gradients (30 to 34 C/km) and heat flow (80 to 100 mW/m2). Deep depths, on the other hand, correspond to zones of low thermal gradient (21 to 26C/km) and low heat flow (65 to 80 mW/m2). Both the derived thermal gradient and the heat flow maps contribute to a better understanding of the Lesugolo geothermal system?s configuration. This study suggests that the Lesugolo geothermal area?s prospect zone is located in the center of the investigated area, where the Lesugolo normal fault forms its southeastern boundary.

Downloads

Download data is not yet available.

References

Nagata, T., Rock Magnetism, Maruzen: Tokyo, 1961.

Okubo, Y., Graf, R.J, Hansen, R.O, Ogawa, K. & Tsu, H., Curie Point Depths of Island of Kyushu and Surrounding Areas, Japan, Geophysics, 53, pp. 481-494, 1985.

Kaerey, P., Brooks, M. & Hill, I., An Introduction to Geophysical Exploration, Blackwell Science: UK, 2002.

Lowrie, W., Fundamental of Geophysics, Cambridge university press: New York, 2007.

John M. & Asger E. Field Geophysics, 4th ed., John Wiley & Sons Ltd., West Sussex, PO19 8SQ, United Kingdom, 2011.

Spector, A. & Grant, F.S., Statistical Models for Interpreting Aeromagnetic Data, Geophysics, 35, pp. 293-302, 1970.

Bhattacharyya, B.K. & Leu, L.K., Spectral Analysis of Gravity and Magnetic Anomalies Due to Two-Dimensional Structures, Geophysics, 40, pp. 993-1013, 1975.

Bhattacharyya, B.K. & Leu, L.K., Analysis of Magnetic Anomalies over Yellowstone National Park: Mapping of Curie Point Isothermal Surface for Geothermal Reconnaissance, Journal of Geophysical Research, 80, pp. 4461-4465, 1975.

Dolmaz, M.N., Hisarli, Z.M., Ustaer, T. & Orbay, N., Curie Point Depths Based on Spectrum Analysis of Aeromagnetic Data, West Anatolian Extensional Province, Turkey, Pure Appl. Geophys., 162, pp. 571-590, 2005.

Shuey, R.T, Schellinger, D.K, Tripp, A.C. & Nley, L.B., Curie Depth Determination from Aeromagnetic Spectra, Geophys. J. R. Astr. Soc, 50, pp. 75-101, 1977.

Bhattacharyya, B.K. & Leu, L.K., Spectral Analysis of Gravity and Magnetic Anomalies due to Rectangular Prismatic Bodies, Geophysics, 42, pp. 41-50, 1977.

Tanaka. A. Okubo, Y. & Matsubayasi, O., Curie Point Depth Based on Spectrum Analysis of the Magnetic Anomaly Data in East and Southeast Asia, Tectonophysics, 306, pp. 461-470, 1999.

Stampolidis, A., Kane, I., Tsokas, G.N., & Tsourlos, P., Curie Point Depths of Albania Inferred from Ground Total Field Magnetic Data, Surveys in Geophysics, 26, pp. 461-480, 2005.

Maden, N., Curie-Point Depth from Spectral Analysis of Magnetic Data in Erciyes Stratovolcano (Central TURKEY), Pure Appl. Geophys., 167, pp. 349-358, 2010.

Turcotte, D.L. & Schubert, G., Geodynamics, Cambridge University Press, New York, 1982.

Blanco, I., Garc, A. & Torta, J.M., Magnetic Study of the Furnas Caldera (Azores)., Ann. Geophys., 40, pp. 341-359, 1997.

Hochstein, M.P. & Soengkono, S., Magnetic Anomalies Associated with High Temperature Reservoirs in The Taupo Volcanic Zone (New Zealand), Geothermics, 26, pp. 1-24, 1997.

Caratori T.F., de Ronde, C.E.J. Scott, B.J., Soengkono, S., Stagpoole, V., Timm, C. & Tivey, M, Interpretation of Gravity and Magnetic Anomalies at Lake Rotomahana: Geological and hydrothermal implications, J. Volcanol. Geoth. Res., 314, pp. 84-94, 2016.

Paoletti, V., Passaro, S., Fedi, M., Marino, C., Tamburrino, S. & Ventura, G., Sub-Circular Conduits and Dikes Offshore the Somma-Vesuvius Volcano Revealed by Magnetic and Seismic Data, Geophys. Res. Lett., 43, pp. 9544-9551, 2016.

Center for Mineral Resources, Coal, and Geothermal (PSMBPBG), Geological Agency of Indonesia & Directorate of New and Renewable Energy and Energy Conversion, Geothermal Potency of Indonesia, 2nd Book, Ministry of Energy and Mineral Resources of Indonesia, 2017. (Text in Indonesian)

Pellerin, L., Johnson, J.M. & Hohmann, G.W., A Numerical Evaluation of Electromagnetic Methods in Geothermal Exploration, Geophysics, 61(1), pp. 121-130, January-February 1996.

Herdianita, N.R. & Priadi, B., Arsenic and Mercury Concentrations at Several Geothermal Systems in West Java, Indonesia, J. Sci. 40A(1), pp. 1-14, 2008.

Rychagov S.N., Nuzhdaev, ?.?. & Stepanov, I.I., Mercury as an Indicator of Temperature and Geochemical Barriers in Hypergenesis Zone of Geothermal Deposits (Kamchatka), Proceedings World Geothermal Congress 2010 Bali, Indonesia, 1, pp. 25-29 April 2010

Supendi, P., Nugraha, A.D., Widiyantoro, S., Abdullah, C.I., Rawlinson, N., Cummins, P.R., Harris, C.W., Roosmawati, N. & Miller, M.S., Fate of Forearc Lithosphere at Arc?Continent Collision Zones: Evidence from Local Earthquake Tomography of the Sunda?Banda Arc Transition, Indonesia. Geophysical Research Letters, 47, pp. 1-9, 2020.

Downloads

Published

2022-02-10

How to Cite

Singarimbun, A., Said, U., Andriani, D., Astro, R. B., Bakrun, B., Djaja, I. G. P. F. S., Agustine, E., Supendi, P., & Srigutomo, W. (2022). Curie Point Depth Analysis of Lesugolo Area, East Nusa Tenggara, Indonesia Based on Ground Magnetic Data. Journal of Engineering and Technological Sciences, 54(1), 220111. https://doi.org/10.5614/j.eng.technol.sci.2022.54.1.11

Issue

Section

Articles

Most read articles by the same author(s)