FENOMENA DEGRADASI SAMPAH ORGANIK TERHADAP STABILITAS TEMPAT PEMROSESAN AKHIR (TPA)
Abstract
Abstrak: Sampah merupakan permasalahan utama di Indonesia dengan persentase pengolahan sampah sebesar 10.09% dan sisanya langsung ditimbun di TPA tanpa ada pengolahan. Sekitar 50%-70% komposisi sampah di Indonesia terdiri dari sampah organik yang mengalami degradasi seiring berjalannya waktu, dimana proses degradasi tersebut mempengaruhi kesetimbangan karbon di sampah yang merupakan unsur utama dalam sampah organik. Proses degradasi sampah sendiri dapat membentuk lindi, gas (CH4 dan CO2), atau tetap dalam sampah sendiri. Degradasi sampah akan merubah densitas sampah pada timbulan, sehingga mempengaruhi faktor keselamatan dari timbulan. Degradasi sampah secara anaerobik tidak menghasilkan gas, sehingga kemungkinan besar gas CO2 yang seharunya terbentuk cenderung berubah menjadi asam yang terdapat pada lindi karena pH lindi bersifat asam dengan rentang pH 2,02 -4,56 dan nilai DHL yang terus meningkat 2,505 "“ 30,6 mS/cm. Semakin kecil void ratio dan tekanan pori sampah, maka semakin besar kontak mikroorganisme di sampah yang dapat mempercepat proses degradasi sampah, dimana proses degradasi ini penurunan karakteristik fisik ini dipengaruhi oleh sirkulasi lindi. Faktor keamaan sampah tanpa kompaksi memiliki rentan antara 1,43 "“ 1,91 dengan rata-rata faktor keamaanan 1,685, Faktor keamaan terkompaksi memiliki rentan faktor keamaan 1,26 - 1,93 dengan rata-rata faktor keamanan 1,535, kedua perlakuan secara rata-rata faktor keamanan sampah terkompaksi melewati standar TPA sementara dan permanen.
Kata kunci: densitas, faktor keselamatan, kesetimbangan massa karbon, sampah organik
Abstract: Solid waste is one of the major problems in Indonesia. The percentage of processed waste is only 10,09, and the rest of it is dumped in the landfill without any treatment. Approximately 50%-70 % of waste composition in Indonesia is organic waste that can be degraded easily over time. The degradation process affects the carbon mass balance. Organic waste degradation can form leachate, biogas(CH4 and CO2), and solid. Degradation process will change its density and it affects landfill stability, especially its safety factor. The anaerobic organic waste degradation in this study does not produce gas, the CO2 gas that is supposed to be formed tends to turn into acid contained in leachate. It is this that causes acidic pH leach with a pH range of 2,02 to 4,56 and an increasing EC value of 2,505 "“ 30,6 mS / cm. Organic waste degradation affects the its physical changes by changes in decreasing void ratios and pore pressures, as well as increasing density. The smaller the void ratio and higher the pore pressure, the greater the contact of microorganisms in the waste surcafe that can accelerate the process of degradation declined in physical characteristics influenced by leachate circulation. It also affect it SF. The uncompacted waste SF is between 1,43-1,91 and its average is 1, 685. Uncompacted waste SF is safe in the temporary and permanent landfill. The compacted waste SF is between 1,26 - 1,93 and its average is 1,535, although some points are below the standard for the temporary landfill and 5 points below the permanent lanfill standard. However, on average, compacted waste SF is safe for temporary and permanent landfill standards.
Keywords: density, carbon mass balance, organic waste, safety factor
References
Bolyard, Stephanie C., Reinhart, Debra.R. (2016). Application of Landfill Treatment Approaches of Stabilization of Municipal Solid Waste. Waste Management, 55, 22.-30.
Brandstatter, Christia., Laner, David., dan Fellner, Johann. (2015). Carbon Pools and Flows During Lab-Scale Degradation of Old Landfilled Waste Under Different Oxygen and Water Regimes. Waste Management, 50, 100-111.
Chen, Yunmin., Guo, Ryu., Li, Yu-Chao., Liu, Hailong., dan Zhan, Tony Liantong. (2016). A Degradation Model for High Kitchen Waste Content Municipal Solid Waste. Waste Management.
Julrat, Sakol, Trabelsi, Samir. (2017). Density Independent Alogorthm for Sensing Moisture Content of Sawdust Based on Reflection Measurements. Biosystem Engineering, 158, 102-109.
Ko, Jae Hac., Yang, Fang., dan Xu, Yang Qiyoung. (2016). The Impact of Compaction and Leachate Recirculation On Waste Degradation is Simulated Landfills.Bioreseource Technology, 211, 72-79.
Ogata, Yuka., Ishigaki, Tomonori., Nakagawa, Mikako., dan Yamada, Masato. (2016). Biotechnology Reports, 10, 111-116.
Sayilacksha, G., Venuja, T., dan Kurukulsuriya, L.C. (2015). Stability of An Open Dumpsite Ageing. Strukctural Engineering and Construction, 15, No. 11, 81-86.
Shi, Y., B. C. Baldwin, K. J. Davis, X. Yu, C. J. Duffy, dan H. Lin. (2015). Simulating High Resoluton Soil Moisture Patterns in The Shale HillsWatershed Using a Land Surface Hyrolic Model . Hydrological Processes, 29, Issue 21, 4624-4637.
Standard Test Methods for Laboratory Compaction Characteristic Modified Effort (56,00 ft-lb/ft3(2,700 kN-m(m3))1
Varga, Gabriella. (2011). Some Geotechnical Aspects of Bioreactor Landfills. Civil Engineering, 5, No. 1, 39-44.
Varga, Gabriella. (2014). Comparison of Landfill Stability Analysis Results Based On Literature Reccomendations. Geosciences and Engineering, 3, No.5, 71-76.
White, J.K, Beaven, R.P. (2013). Development to A Landfill Processes Model Folloriwng Its Appliation to Rwo Landfill Modelling Challenges. Waste Management, 33, 1969-1981.
Xu, Qiyoung., Jin, Xiao., Ma, Zeyu., Tao, Huchun., dan Ko, Jae Hac. (2014) Methane Production in Simulated Hybrid Bioreactor Landfill. Bioresource Technology.
Xu, Qiyoung., Tian, Yian., Wang, Shen., dan Ko, Hae Hac. (2015). A Comparative Study of Leachate Quality and Biogas Generation in Simulated Anaerobic and Hybrid Bioreactors. Waste Management.
Ye, Jingqing., Li, Dong., Sun, Yongming., Wang, Guohui., Yuan Zhenhong., Zhen, Feng., dan Wang., Yao. (2013). Improved Biogas Production From Strow by Co-Digestiin with Kitche Waste and Pig Manure. Waste Management, 33, 2653-2658.