SIMULASI KOMPUTER PENGARUH RELOKASI KERAMBA JARING APUNG TERHADAP KANDUNGAN NITRAT DI DALAM AIR WADUK JATILUHUR
Abstract
Abstrak: Kegiatan keramba jaring apung yang dikembangkan di Waduk Jatiluhur berfungsi untuk memenuhi kebutuhan pangan. Namun, akibat pertumbuhannya yang cepat dan tidak terkendali maka kegiatan keramba jaring apung telah menjadi sumber pencemar utama, termasuk nitrat, dalam Waduk Jatiluhur. Nitrat sebagai salah satu nutrien yang dapat digunakan langsung oleh biota air merupakan salah satu pemicu terjadinya eutrofikasi dalam waduk. Degradasi kualitas air akibat eutrofikasi dapat mengganggu fungsi waduk sebagai pembangkit listrik dan penyedia pasokan air baku air minum serta irigasi pertanian. Upaya yang dapat dilakukan untuk mengatasi hal tersebut adalah dengan merelokasi keramba jaring apung dari daerah disekitar outlet waduk menuju lokasi yang lebih jauh dari outlet waduk. Untuk melihat sejauh mana pengaruh kegiatan keramba jaring apung dalam waduk maka dilakukan simulasi konsentrasi nitrat dalam air waduk dengan menggunakan pendekatan segmentasi vertikal. Simulasi konsentrasi nitrat juga dilakukan dengan menerapkan skenario perbaikan berupa relokasi keramba jaring apung. Simulasi terhadap skenario perbaikan dilakukan sebagai suatu langkah optimasi dalam rangka mereduksi konsentrasi nitrat di outlet waduk. Hasil simulasi menunjukkan bahwa upaya pengelolaan dengan merelokasikan keramba jaring apung menuju lokasi yang lebih jauh dari outlet wasuk telah berhasil menurunkan konsentrasi nitrat di segmen terakhir waduk. Dari hasil simulasi didapat bahwa reduksi konsentrasi nitrat tertinggi didapatkan dengan cara merelokasi keramba jaring apung dari segmen kedelapan menuju segmen kedua. Dengan merelokasikan keramba jaring apung menuju segmen kedua sebanyak 20%, 50%, dan 100% dari jumlah keramba jaring apung di segmen kedelapan masing-masing telah berhasil menurunkan konsentrasi nitrat sebesar 16,67%, 41,52%, dan 82,37% pada segmen terakhir waduk.
Kata kunci: keramba jaring apung, nitrat, Waduk Jatiluhur, kualitas air.
Abstract: Fish cagesin Jatiluhur reservoir are developed in order to meet the food demands. However, due to its rapid and uncontrollable growth, fish cages turn to be the major pollutant source in Jatiluhur reservoir. Nitrate, as one of nutrient that can be use directly by aquatic biota, is one of the factor that trigger eutrophication in a reservoir. Water quality degradation caused by eutrophication can hinder reservoir function as a hydro-electric generation and water resources that provided raw water for drinking water and irrigation. An effort that is possibly done to overcome the problem was by relocating the fish cages to upstream site. The simulation of nitrate concentration that approached by vertical segmentation then being done to see to what extent fish cage number affected the nitrate concentration in reservoir. The simulation was also being done by implementing improved scenario. The simulation with improved scenario carried out as an optimization measure in order to reduce the nitrate concentration in reservoir outlet. The results of the simulation indicated that by relocated the fish cage to further location from reservoir outlet has been successful reduce nitrate concentration in the last segment of the reservoir. The highest nitrate concentration reduction was obtained when the fish cage was relocated from the eighth segment to the second segment of the reservoir. By relocate the fish cage as much as 20%, 50%, and 100% of the number of fish cage in the eighth segment the nitrate concentration reduction in the last segment is 16.67%, 41.52%, and 82.37% respectively.
Keywords: fish cage, nitrate, Jatiluhur reservoir, water quality.
References
Abery, N.W., Sukadi, F., Budhiman, A.A., Kartamihadja, E.S., Koeshendrajana, S., Buddhiman, and de Silve, S.S. 2005.
Fisheries and cage culture of three reservoirs in West Java, Indonesia; A Case study of ambitious development and resulting interaction. Fisheries Management and Ecology 12(5), 315-330
Achmad, F. 2011. Dampak pencemaran lingkungan Kota Praya terhadap kualitas air Waduk Batujai. Buletin Geologi Tata Lingkungan, 21(2), 69-82
Ali, Shaukat. 1974. Programming a lake eutrophication model for the digital computer. Research report at the Utah State University, USA.
Boegman, L., Loewen, M.R., Hamblin, P.F., and Culver, D.A. 2001.
Application of a two-dimensional hydrodynamic reservoir model to Lake Erie. Canada. Journal Fish Aquatic Science, 58(5), 858-869
Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., and Smith, V.H. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Application, 8(3), 559-568
Charles R. O'Melia. 1998. Coagulation and sedimentation in lakes, reservoirs and water treatment plants. Water Science and Technology, 37(2), 129-135
Chen, N., Wu, J., and Hong, H. 2012. Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, Southeastern China. Science of the Total Environment, 431, 357-365
Cheng,W.P., Ruey Fang Yu, Chien Hsun Chen, and Che Hsun Chi. 2004. Enhanced coagulation on reservoir water by dual inorganic coagulants. Environmental Engineering Science. 20(3), 229-235
Cullen, P., Rosich, R., and P.Bek. 1978. A phosphorous budget for Lake Burley Griffin and management implications for urban lakes. Research Project No. 75/92. Australian Water Resources Council, Technical Paper No.31, Canberra, 1978.
Degefua, F., S. Mengistub, and M. Schagerlc. 2011. Influence of fish cage farming on water quality and plankton in fish ponds: A case study in the Rift Valley and North Shoa reservoirs, Ethiopia. Aquaculture, 316(1-4), 129-135
Demetrio, J.A., Gomez, L.C., Latini, J.D., and Agostinho, A.A. 2012. Influence of net cage farming on the diet of associated wild fish in a Neotropical Reservoir. Aquaculture 330-333, 172-178
DHL (Delft Hydraulic Laboratory). 1986. Water quality in relation to pollution. Prepared for water quality course during research project BTA-155 at the Water Research Centre, Ministry of Public Works of Indonesia. Bandung 1986.
Dillon, P.J., and F.H. Rigler. 1975. A simple method for predicting the capacity of a lake for development based on lake Trophic Status." J. Fish. Res. Bd. Canada. 31, 1519-1531.
Dingguo, Huichao, J.D., and Wei, L. 2011. Influence of thermal density flow on hydrodynamics of Xiangxi Bay in Three Georges Reservoir, China. Procedia Environmental Science. 10B, 1637-1645
FAO. 2006. Guidelines for Soil Description 4th Edition.
Garno, Y.S. 2002. Beban pencemaran limbah perikanan budidaya dan eutrofikasi di perairan Waduk pada DAS Citarum. Jurnal Teknologi Lingkungan, 3(2), 112-120
Garno, Y.S. (2003).Status kualitas perairan Waduk Juanda. Jurnal Teknologi Lingkungan, P3TL-BPPT, 4(3), 128-135
Hopp, L. and McDonnell, J.J. 2009. Connectivity at the hillslope scale: Identifying interactions between storm size, bedrock permeability, slope angle and soil depth. Journal of Hydrology, 376(3-4), 378-391
Howarth, Robert W., Andrew Sharpley, and Walker. 2002. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries and Coasts 25(4), 656-676
Ilosangi, E.S. 2001. Evaluasi kualitas air Waduk Jatiluhur selama Periode 1996-2000 (Suatu Kajian bagi Tujuan Pengelolaan Waduk). Laporan Tugas Akhir. Bogor: Institut Pertanian Bogor
Jianga, Jian-Guo., and Yun-Fen Shenb. 2006. Estimation of the natural purification rate of a eutrophic lake after pollutant removal. Ecological Engineering, 28(2), 166-173
Jones, J.R., and R.W. Bachmann. (1976). "Prediction of Phosphorous and Chlorophyll levels in lakes. J. Wat. Poll. Control Fed. 48, 2176-2182.
Jong, R.D., Drury, C.F., Yang, J.Y., and Campbell, C.A. 2009. Risk of water contamination by Nitrogen in Canada as estimated by the IROWC-N model. Journal of Environmental Management, 90(10), 3169-3181
Juantari, G.Y., Sayekti, R. W., and D. Harisuseno. 2013. Status trofik dan daya tampung beban pencemaran Waduk Sutami. Jurnal Teknik Pengairan, 4(1), 61-66
Kratzer, Charles., and Patrick L. Brezonik. 1984. Application of Nutrient Loading Models to the analysis of trophic condition in Lake Okeechobee, Florida. Environmental Management, 8, 109-120.
Kusuda, Tetsuya. 1984. Water control management in lakes and reservoirs. Study Meeting on Creating Better Environment at the Dept. of Civil Engineering Hydraulics, Kyushu University, Fukuoka, Japan.
Li, Z.G., Lin, L., Sagisaka, M., Yang, P., and Wu, W.B. 2012. Global-Scale modelling of potential changes in terrestrial Nitrogen cycle from a growing Nitrogen deposition. Procedia Environmental Sciences, 13, 1057-1068
Machbub, B. 2010. Model perhitungan daya tampung beban pencemaran air danau dan waduk. Jurnal Sumber Daya Air, 6(4), 129-144
McDonald, M.E., Tikkanen, C.A., Axler, R.P., Larsen, C.P., and Host, G. 1996. Fish simulation culture model (FISH-C): A Bioenergetics based model for aquacultural waste load application. Aquaculture Engineering, 15(4), 243-259
Nastiti, A.S., Krismono, and Kartamihardja, E.S. 2001. Dampak budidaya ikan dalam keramba jaring apung terhadap peningkatan unsur N and P di perairan Waduk Saguling, Cirata, dan Jatiluhur. Jurnal Penelitian Perikanan Indonesia, 7(2), 22-30
Peiris, A.T.A. and Miguntanna, N.P. 2012. Analysis of nutrients in Kurunegala Lake, Srilanka. SAITM Research Symposium on Engineering Advancements (SAITM - RSEA 2012), 72-74
Porter, C.B., M.D. Krom, M.G. Robbins, L. Brickell, and A. Davidson. 1987. Ammonia excretion and total N budget for gilthead seabream (Sparus aurata) and its effect on water quality conditions. Aquaculture. 66(3-4), 287-297
Pujiastuti, P., Ismail, B., and Pranoto. 2013. Kualitas dan beban pencemaran perairan waduk Gajah Mungkur. Jurnal Ekosains, 5(1), 59-75
Schnoor, J.L. 1996. Environmental modeling: Fate and transport of pollutants in water, air, and soil. New York: John Willey and Sons
Sherif, M.M., Mohamed, M.M., Shetty, A., and Almulla, M. 2011.
Rainfall-Runoff modeling of three wadis in the northern area of UAE. Journal of Hydrologic Engineering, 16(1), 10-20
Smith, V.H., G.D. Tilman, J.C. Nekola. 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100, 179-196
Soemarwoto, O. (2005). Pengelolaan jaring apung. Prosiding Seminar Pengelolaan Waduk dan Danau 12 Oktober 2004
Sudjono, P. 1995. A mathematical concept of runoff prediction model for small tropical catchment areas. Wat. Sci. Tech., 31(9), 27-36
Sudjono, P. 2003. Preliminary development of horizontal segmentation model for water quality prediction in elongated reservoirs. Jurnal Teknik Sipil Universitas Tarumanagara. 9, 1-15
Sunmdjono, Priana and Otte S. Novendra. 2002. Trophic analysis of Saguling Dam using empirical formulae. Jurnal Teknik Lingkungan -IATPI and Teknik Lingkungan ITB. 8(1), 39-48.
Sudjono, Priana. 1999. ISTFM computer programming, surface runoff computation for tropical basin. Dept. of Environmental Engineering - Institute Technology in Bandung, Research Report Number: 19835399
Sukristiyanti, Lestiana, H., Maria, R., Karningsih, N., dan Sutarman. 2007. Observasi kualitas air pada Waduk Jatiluhur. Prosiding Seminar Geoteknologi, Kontribusi Ilmu Kebumian dalam Pembangunan Berkelanjutan, Lembaga Ilmu Pengetahuan Indonesia. 119-124
Tjahjo, D.W.H. and S.E. Purnamaningtyas. 2008. Kajian kualitas air dalam evaluasi pengembangan perikanan di waduk Ir. H. Djuanda, Jawa Barat. Jurnal Litbang Perikanan, 16(1), 15-29
Tjahjo, D.W.H. and S.E. Purnamaningtyas. 2010. Bio-Limnologi waduk kaskade sungai Citarum, Jawa Barat. Limnotek. 17(2), 147-157
Vollenweider. R.A. 1976. Advances in defining critical loading levels for Phosphorous in lake eutrophication." Mem. Ist. Ital. Idrobiol, 33, 53-83.
Wu, L., Long, T.Y., Liu, X., and Guo, J.S. 2012. Impacts of climate and land-use changes on the migration of non-point source Nitrogen and Phosphorus during Rainfall-Runoff in the Jialing River Watershed, China. Journal of Hydrology, 475, 26-41
Xu, J., Yin, K., Liu, H., Lee, J.H.W., Anderson, D.M., Ho, A.Y.T., and Harrison, P.J. 2010. A comparison of eutrophication impacts in two harbours in Hong Kong with different hydrodynamics. Journal of Marine Systems. 83(4), 276-286