OPTIMASI PELAPISAN MATERIAL PEREDAM VISKOELASTIK PADA STRUKTUR PELAT ELASTIK
Abstrak
This paper discusses a method to optimize the distribution of viscoelastic-damping layer on elastic plate structures. This method is based on well known SUMT (Sequential Unconstrained Minimization Technique) algorithm. An innovation where elements' strain energy distribution over the plate structure is used to determine the search direction vector. The method models the two layers damped plate as a single layer damped plate. The mechanical properties of single layer damped plate were determined such that they are equivalent to those of two-layers elasticviscoelastic laminate. MSC/Nastran finite element software was used to calculate the dynamic characteristics and the elements' strain energy distribution of the single layer plate. The proposed innovation has successfully determined the optimum distribution of viscoelastic material. The results show that the optimum distribution of viscoelastic material on elastic structure is strongly influenced by structural support type and number of modes retained for the analysis.
Referensi
I.W. Suweca, B. Budiwantoro, Gatot Santoso, Djoeli
Satrijo, Optimasi Pelapisan Material Viskoelastik,
Jurnal Mesin, XI, 1, 1996.
D. Ross, E.E Ungar dan E.M Kerwin, Damping of
Plate Flexural Vibrations by Means of Viscoelastic
Laminae, Structural Damping, ASME, New York,
NY, 1959.
M. Carfagni, P. Citti, F. Palloni, M. Pierini dan H.
Bloemhof, Application of Simplified Method for The
Dynamic Simulation of Multilayer Panels,
Proceedings of 18th Modal Analysis Conference, San
Antonio, TX. 2000.
M. Carfagni, P. Citti, F. Palloni, dan M. Pierini, An
ANSYS-based Finite Element Method For The
Dynamic Simulation of Multilayer Panels,
Dipartimento di Meccanica e Tecnologie Industriali,
Universita di Firenze, Firenze, Italy, 2000.
A. Yildiz dan K. Stevens, Optimum Thickness
Distribution of Unconstrained Viscoelastic Damping
Layer Treatments for Plates, Journal of Sound and
Vibration, 103(2), 183-199, Academic Press Inc,
London, 1985
M.A. Trindade, A. Benjeddou dan R. Ohayon,
Modeling of Frequency Dependent Viscoelastic
Materials for Active-Passive Vibration Damping,
Journal of Vibration and Acoustics, 122, 169-174,
ASME, 2000.
G.N. Vanderplaats, Numerical Optimization
Techniques for Engineering Design: With
Applications, McGraw-Hill, New York, 1984.
B. C. Nakra, Structural Dynamic Modification Using
Additive Damping, Sdhn, 25, 3, 277-289, India,
A. Baz dan J. Ro, Optimum Design and Control of
Active Constrained Layer Damping, Transactions of
the ASME, 117, 135-144, ASME, 1995.
A.D. Nashif, D.I.G. Jones dan J.P. Henderson,
Vibration Damping, John Willey & Sons, 1985
S. Singiresu Rao, Mechanical Vibration, Purdue
University, Addison Wesley Publishing Company.
D.J. Ewins, Modal Testing Theory and Practice,
John Willey & Sons, 1984.
D. Robert Cook, Concept and Applications of Finite
Element Analysis, University of Wisconsin-
Madison, John Willey & Sons, 1981
M.A. Gockel, MSC/NASTRAN Handbook for
Dynamic Analysis, The MacNeal-Schwendler
Corporation, 1983.
Ken Blakely, Basic Dynamic Analysis,
MSC/NASTRAN User's Guide, The MacNeal-
Schwendler Corp, 1993.
The MSC, MSC/NASTRAN Dynamic Analysis,
Seminar Notes, The MacNeal-Schwendler
Corporation, 1995.
The MSC, MSC/NASTRAN Design Sensitivity and
Optimization, Seminar Notes, The MacNeal-
Schwendler Corporation, 1995.
Louis Komzsik, Numerical Methods, MSC/
NASTRAN User's Guide, The MacNeal-Schwendler
Corporation, 1983.