Evaluation of Bio-Corrosion on Carbon Steel by Bacillus Megaterium in Biodiesel and Diesel Oil Mixture

Yustina Metanoia Pusparizkita, Wolfgang Schmahl, Tjandra Setiadi, Bork Ilsemann, Mike Reich, Hary Devianto, Ardiyan Harimawan


Biodiesel can act as carbon source for bacterial metabolisms, leading to corrosion of carbon steel. In this study, the corrosion of carbon steel by biodiesel blends (B15, B20, B30) was observed in the presence of Bacillus megaterium. The effect of biodiesel concentration on microorganism-induced corrosion was investigated by electrochemical impedance spectroscope (EIS), scanning electron microscope (SEM) and digital microscope. The results showed that under various biodiesel concentrations, Bacillus megaterium can grow and form biofilm on carbon steel. Based on the impedance analysis, their presence can increase the corrosion rate and cause pitting corrosion because the biofilm can change the electrochemical reactions in the metal or the interface solution and the kinetics of the anodic cathodic reactions. Also, Bacillus megaterium produces acid metabolites and can oxidize iron. Besides being influenced by Bacillus megaterium activities, the pitting formed on carbon steel depends on the biodiesel concentration. The results showed a great deal of shallow pit formation in B30, exacerbating the severity of metal roughness.


bio-corrosion; biofilm; EIS; hydrocarbons; pitting; SEM

Full Text:



Sendzikienea, E., Makarevicienea, V., Janulisa, P. & Makareviciuteb, D., Biodegradability of Biodiesel Fuel of Animal and Vegetable Origin, Eur. J. Lipid Sci. Technol., 109, pp. 493-497, 2007.

El-Araby, R., Amin, A., El Morsi, A.K., El-Ibiari, N.N. & G. El-Diwani, I., Study on the Characteristics of Palm Oil-Biodiesel-Diesel Fuel Blend, Egyptian Journal of Petroleum, 2017. DOI: 10.1016/j.ejpe.2017.03.002.

Rajasekar, A., Ponmariappan, S., Maruthamuthu, S. & Palaniswamy, N., Bacterial Degradation and Corrosion of Naphtha in Transporting Pipeline, Current Microbiology, 55(5), pp. 374-381, 2007. DOI: 10.1007/s00284-007-9001-z.

Rajasekar, A., Maruthamuthu, S., Muthukumar, N., Mohanan, S., Subramanian, P. & Palaniswamy, N., Bacterial Degradation of Naphtha and Its Influence on Corrosion, Corrosion Science, 47, pp. 257-271, 2005.

Rajasekar, A., Maruthamuthu, S., Ting, Y.P., Balasubramanian, R. & Rahman, P.K.S.M., Bacterial Degradation of Petroleum Hydrocarbons, In: Singh S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering. Springer, Berlin, Heidelberg, pp. 339-369, 2012. DOI: 10.1007/978-3-642-23789-8_13.

Rajasekar, A., Balasubramanian, R. & Vm Kuma, J., Role of Hydrocarbon Degrading BacteriaSerratia Marcescens ACE2 and Bacillus Cereus ACE4 on Corrosion of Carbon Steel API 5LX, Industrial & Engineering Chemistry Research, 50(17), pp. 10041-10046, 2011. DOI: 10.1021/ ie200709q.

Parthipan, P., Elumalai, P., Karthikeyan, O.P., Ting, Y.P. & Rajasekar, A., A Review on Biodegradation of Hydrocarbon and Their Influence on Corrosion of Carbon Steel with Special Reference to Petroleum Industry, Journal of Environment and Biotechnology Research, 6(1), pp. 12-33, 2017.

Aïmeur, N., Houali, K., Hamadou, L., Benbrahim, N. & Kadri, A., Influence of Strain Bacillus Cereus Bacterium on Corrosion Behaviour of Carbon Steel in Natural Sea Water, Corrosion Engineering, Science and Technology, 50(8), pp. 579–588, Nov. 2015. DOI: 10.1179/ 1743278215Y. 0000000022.

Jia, R., Yang, D., Xu, J., Xu, D. & Gu, T., Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas Aeruginosa Biofilm Under Organic Carbon Starvation, Corrosion Science, 127, pp. 1-9, Oct. 2017. DOI: 10.1016/j.corsci.2017.08.007.

Parthipan, P., Elumalai, P., Ting, Y.P., Rahman, P.K.S.M. & Rajasekar, A., Characterization of Hydrocarbon Degrading Bacteria Isolated from Indian Crude Oil Reservoir and Their Influence on Biocorrosion of Carbon Steel API 5LX, International Biodeterioration & Biodegradation, 129, pp. 67-80, Apr. 2018. DOI: 10.1016/j.ibiod.2018.01.006.

Beech, I. B., Cheung, C.W., Johnson, D.B. & Smith, J.R., Comparative Studies of Bacterial Biofilms on Steel Surfaces Using Atomic Force Microscopy and Environmental Scanning Electron Microscopy, Biofouling, 10(1-3), pp. 65-77, 1996. DOI: 10.1080/08927019609386 271.

Steele, A., Goddard, D.T. & Beech, I.B., An Atomic Force Microscopy Study of the Biodeterioration of Stainless Steel in the Presence of Bacterial Biofilms, International Biodeterioration & Biodegradation, 34(1), pp. 35-46, Jan. 1994. DOI: 10.1016/0964-8305(94)90018-3.

Xu, L., Fang, H.H.P. & Chan, K., Atomic Force Microscopy Study of Microbiologically Influenced Corrosion of Mild Steel, Journal of The Electrochemical Society, 146(12), pp. 4455-4460, Dec. 1999. DOI: 10. 1149/1.1392658.

Xu, L.C., Chan, K.Y. & Fang, H.H.P., Application of Atomic Force Microscopy in the Study of Microbiologically Influenced Corrosion, Materials Characterization, 48(2), pp. 195-203, Apr. 2002. DOI: 10. 1016/S1044-5803(02)00239-5.

Rajasekar, A., Maruthamuthu, S. & Ting, Y.P., Electrochemical Behavior of Serratia marcescens ACE2 on Carbon Steel API 5L-X60 in Organic/Aqueous Phase, Industrial & Engineering Chemistry Research, 47(18), pp. 6925-6932, Sep. 2008. DOI: 10.1021/ie8005935.

Busalmen, J.P., Vazquez, M. & de Sanchez, S.R., New Evidence on The Catalse Mechanism of Microbial Corrosion, Electrochem Acta, 47, pp. 1857-1865, 2002.

Angell, P., Understanding Microbially Influenced Corrosion as Biofilm-Mediated Changes in Surface Chemistry, Current Opinion in Biotechnology, 10(3), pp. 269-272, Jun. 1999. DOI: 10.1016/S0958-1669(99)80047-0.

Lee, A. & Newman, D., Microbial Iron Respiration: Impacts of Corrosion Processes, Appl. Microbiol. Biotechnol, pp. 134-139, 2003.

Wang, G., Chai, K., Wu, J. & Liu, F., Effect of Pseudomonas Putida on The Degradation of Epoxy Resin Varnish Coating in Seawater, International Biodeterioration & Biodegradation, 115, pp. 156-163, Nov. 2016, doi: 10.1016/j.ibiod.2016.08.017.

Heyer, A., D’Souza, F., Morales, C.F.L., Ferrari, G., Mol, J.M.C. & de Wit, J. H.W., Ship Ballast Tanks A Review from Microbial Corrosion and Electrochemical Point of View, Ocean Engineering, 70, pp. 188-200, 2013. DOI: 10.1016/j.oceaneng.2013.05.005.

Yuan, S. J. & Pehkonen, S.O., Microbiologically Influenced Corrosion of 304 Stainless Steel by Aerobic Pseudomonas NCIMB 2021 Bacteria: AFM and XPS Study, Colloids and Surfaces B: Biointerfaces, 59(1), pp. 87-99, Sep. 2007. DOI: 10.1016/j.colsurfb.2007.04.020.

Gu, T. & Xu, D., Why Are Some Microbes Corrosive and Some Not?” in NACE-2013-2336, NACE, pp. 15, 2013.

Xu, D., Li, Y., Song, F. & Gu, T., Laboratory Investigation of Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Bacterium Bacillus Licheniformis, Corrosion Science, 77, pp. 385-390, 2013. DOI: 10.1016/j.corsci.2013.07.044.

Jegdic, B., Polic-Radovanovic, S., Ristic, S. & Alil, A., Corrosion Processes, Nature and Composition of Corrosion Products on Iron Artefacts of Weaponry, Scientific Technical Review, 61, pp. 50-56, 2011.

Castano, C.E., Maddela, S., O’Keefe, M.J. & Wang, Y.M., A Comparative Study on the Corrosion Resistance of Cerium-Based Conversion Coatings on AZ91D and AZ31B Magnesium Alloys, ECS Transactions, 41(15), pp. 3-12, May 2012. DOI: 10.1149/1.3696866.

DOI: http://dx.doi.org/10.5614%2Fj.eng.technol.sci.2020.52.3.5


  • There are currently no refbacks.